527 research outputs found

    Rho GTPases and signaling networks

    Get PDF
    The Rho GTPases form a subgroup of the Ras superfamily of 20- to 30-kD GTP-binding proteins that have been shown to regulate a wide spectrum of cellular functions. These proteins are ubiquitously expressed across the species, from yeast to man. The mammalian Rho-like GTPases comprise at least 10 distinct proteins: RhoA, B, C, D, and E; Rac1 and 2; RacE; Cdc42Hs, and TC10. A comparison of the amino acid sequences of the Rho proteins from various species has revealed that they are conserved in primary structure and are 50%–55% homologous to each other. Like all members of the Ras superfamily, the Rho GTPases function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. Until recently, members of the Rho subfamily were believed to be involved primarily in the regulation of cytoskeletal organization in response to extracellular growth factors. However, research from a number of laboratories over the past few years has revealed that the Rho GTPases play crucial roles in diverse cellular events such as membrane trafficking, transcriptional regulation, cell growth control, and development. Consequently, a major challenge has been to unravel the underlying molecular mechanisms by which the Rho GTPases mediate these various activities. Many targets of the Rho GTPases have now been identified and further characterization of some of them has provided major insights toward our understanding of Rho GTPase function at the molecular level. This review aims to summarize the general established principles about the Rho GTPases and some of the more recent exciting findings, hinting at novel, unanticipated functions of the Rho GTPases

    Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes

    Get PDF
    Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte-ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, of ARF6, indicating the unique role of pac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements; Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70(S6) (kinase) but appeared to involve a phospholipid kinase

    The role of the Rho GTPases in neuronal development

    Get PDF
    Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders

    Regulation of Chandelier Cell Cartridge and Bouton Development via DOCK7-Mediated ErbB4 Activation

    Get PDF
    Chandelier cells (ChCs), typified by their unique axonal morphology, are the most distinct interneurons present in cortical circuits. Via their distinctive axonal terminals, called cartridges, these cells selectively target the axon initial segment of pyramidal cells and control action potential initiation; however, the mechanisms that govern the characteristic ChC axonal structure have remained elusive. Here, by employing an in utero electroporation-based method that enables genetic labeling and manipulation of ChCs in vivo, we identify DOCK7, a member of the DOCK180 family, as a molecule essential for ChC cartridge and bouton development. Furthermore, we present evidence that DOCK7 functions as a cytoplasmic activator of the schizophrenia-associated ErbB4 receptor tyrosine kinase and that DOCK7 modulates ErbB4 activity to control ChC cartridge and bouton development. Thus, our findings define DOCK7 and ErbB4 as key components of a pathway that controls the morphological differentiation of ChCs, with implications for the pathogenesis of schizophrenia

    Complex formation between RAS and RAF and other protein kinases

    Get PDF
    We used a Saccharomyces cerevisiae genetic system to detect the physical interaction of RAS and RAF oncoproteins. We also observed interaction between RAS and byr2, a protein kinase implicated as a mediator of the Schizosaccharomyces pombe ras1 protein. Interaction with RAS required only the N-terminal domains of RAF or byr2 and was disrupted by mutations in either the guanine nucleotide-binding or effector-loop domains of RAS. We observed interaction between MEK (a kinase that phosphorylates mitogen-activated protein kinases) and the catalytic domain of RAF. RAS and MEK also interacted but only when RAF was overexpressed

    Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

    Get PDF
    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS
    • …
    corecore