67 research outputs found
Structure and optical properties of silicon layers with GaSb nanocrystals created by ion-beam synthesis
We have studied the ion-beam synthesis of GaSb nanocrystals in Si by high-ο¬uence implantation of Sb and Ga ions followed by thermal annealing. RBS, TEM/TED, RS, and photoluminescence (PL) were employed to characterize the implanted layers. It was found that the nanocrystals size increases from 5 to 60 nm in the samples annealed at 900 8Cup to 20β90 nm in the samples annealed at 1100 8C. An existence of signiο¬cant mechanical stresses within implanted layers has been detected. The stress values have been calculated from the shift of the Si ο¬rst order Raman band. For the samples annealed at 900 8C a broad band in the spectral region of about
0.75β1.05 eV is detected in the PL spectra. The nature of this PL band is discussed
Nanocrystal- and Dislocation-Related Luminescence in Si Matrix with InAs Nanocrystals
We have studied the inο¬uence of ion implantation and post-implantation annealing regimes on the structural and optical properties of silicon matrix with ion-beam synthesized InAs nanocrystals. (100) Si wafers were implanted at 25 and 500 Β±C, subsequently with high ο¬uences of As and In ions. After implantation the samples were processed by furnace and rapid thermal annealing at 900, 950 and 1050 Β±C. A part of the samples implanted at 25 Β±C was additionally exposed to H+2 ions (100 keV, 1.2 Γ 1016 cmβ2 in terms of atomic hydrogen). This
procedure was performed to obtain an internal getter. In order to characterize the implanted samples transmission electron microscopy and low-temperature photoluminescence techniques were employed. It was demonstrated that by introducing getter, varying the ion implantation temperature, ion ο¬uences and post-implantation annealing duration, and temperature it is possible to form InAs nanocrystals in the range of sizes of 2β80 nm and create various concentration and distribution of diΛerent types of secondary defects. The last ones cause in turn the appearance in photoluminescence spectra dislocation-related D1, D2 and D4 lines at 0.807, 0.870 and 0.997 eV, respectively
Ion Beam Synthesis of InAs Nanocrystals in Crystalline Silicon
The formation of nanodimensional InAs crystallites on Si wafers was studied by the method of high fluence implantation of As and In ions with subsequent high temperature treatment. It was found that the size and depth distributions of the crystallites depend on both the implantation temperature and the annealing conditions. A broad band in an energy range of 0.75β1.1 eV was recorded in the photolumines cence spectra of the samples
Structure and Optical Properties of Silicon Layers with GaSb Nanocrystals Created by Ion-Beam Synthesis
We have studied the ion-beam synthesis of GaSb nanocrystals in Si by high-ο¬uence βhotβ implantation of Sb and Ga ions followed by thermal annealing. The Rutherford backscattering, transmission electron microscopy/ transmission electron diΛraction, Raman spectroscopy and photoluminescence were used to characterize the implanted layers. It was found that the nanocrystal size increases from 5 to 60 nm in the samples annealed at 900 Β±C up to 20β90 nm in those annealed at 1100 Β±C. For the samples annealed at 900 Β±C a broad band in the region of 0.75β1.05 eV is registered in the photoluminescence spectra. The nature of this photoluminescence band is discussed
A New Nanoporous Material Based on Amorphous Silicon Dioxide
Processes for making nanoporous SiO2 layers on Si via the irradiation of thermally oxidized silicon wafers with fast ions followed by chemical treatment in a solution or vapor of hydrofluoric acid are presented. It is shown that the density, shape, diameter, and length to diameter ratio of channels etched in silicon dioxide can be controlled by varying the regimes of fast ion irradiation or chemical treatment of SiO2/Si structures. Track parameters calculated using the thermal spike model are compared with the chemical etching data
Structure changes in InP and GaAs crystals double irradiated with electrons and swift heavy ions
We have studied InP and GaAs crystal structure changes under the influence of swift Kr and Bi ions irradiation by means of scanning electron microscopy, atomic force microscopy and selective chemical etching. The previous disordering of samples by electron irradiation is shown to be leading to macrodefect formation in the form of cracks and breaks at the depths near the ion end-of-range and on the crystal surface. A possible explanation of the observed effects is proposed.ΠΠΈΠ²ΡΠ΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Π·ΠΌΡΠ½ ΡΡΡΡΠΊΡΡΡΠΈ ΠnP Ρ GaAs ΠΏΡΠΈ ΠΎΠΏΡΠΎΠΌΡΠ½Π΅Π½Π½Ρ ΡΠΎΠ½Π°ΠΌΠΈ Kr Ρ BΡ ΠΉ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π°ΠΌΠΈ ΠΏΡΠΈ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΡ ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡ, Π°ΡΠΎΠΌΠ½ΠΎΡ ΡΠΈΠ»ΠΎΠ²ΠΎΡ ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡ ΠΉ ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ
ΡΠΌΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π»Π΅Π½Π½Ρ. ΠΡΠ½ΠΎΠ²Π½ΠΈΠΌΠΈ Π΅ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΏΡΠΈ ΡΡΠΎΠΌΡ Π²ΠΏΠ»ΠΈΠ²Ρ Π±ΡΠ»ΠΈ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΡΡΡΠΈΠ½ Ρ ΡΡΠΉΠ½ΡΠ²Π°Π½Ρ ΡΡΡΡΠΊΡΡΡΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ, ΡΠΊΡ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ½ΠΎ ΠΏΡΠΎΡΠ²Π»ΡΠ»ΠΈΡΡ Π½Π°ΠΏΡΠΈΠΊΡΠ½ΡΡ ΠΏΡΠΎΠ±ΡΠ³Ρ ΡΠΎΠ½ΡΠ² Ρ ΠΏΠΎΠ±Π»ΠΈΠ·Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ. ΠΠΎΠΆΠ»ΠΈΠ²Π΅ ΠΏΠΎΡΡΠ½Π΅Π½Π½Ρ Π²ΠΈΡΠ²Π»Π΅Π½ΠΈΡ
Π΅ΡΠ΅ΠΊΡΡΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ.ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΡΡΡΡΠΊΡΡΡΡ InP- ΠΈ GaAs- ΠΏΡΠΈ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠΈ ΠΈΠΎΠ½Π°ΠΌΠΈ Kr ΠΈ Bi ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°ΠΌΠΈ ΠΏΡΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΡΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΏΡΠΈ ΡΡΠΎΠΌ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠ²Π»ΡΠ»ΠΈΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅ΡΠΈΠ½ ΠΈ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΡΠ²Π»ΡΠ»ΠΈΡΡ Π² ΠΊΠΎΠ½ΡΠ΅ ΠΏΡΠΎΠ±Π΅Π³Π° ΠΈΠΎΠ½ΠΎΠ² ΠΈ Π²Π±Π»ΠΈΠ·ΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ
Raman study of light-emitting SiNx films grown on Si by low-pressure chemical vapor deposition
Si-rich silicon nitride (SRSN) films were deposited on Si wafers by low pressure chemical vapor deposition (LPCVD) technique and, subsequently, annealed at (800β1200) Β°C to form Si precipitates. The composition of SiNx films was measured by Rutherford backscattering spectrometry (RBS). Two sets of samples differed by the amount of excessive Si (Siexc) in silicon nitride were studied. Evolution of Si nanoclusters from amorphous to crystalline ones during high temperature treatment was examined by Raman scattering (RS) spectroscopy. The amorphous Si clusters were already revealed in as-deposited SiNx while the annealing results in their crystallization. The crystalline nanoprecipitates are only registered in nitride films after annealing at 1200 Β°C. A dependence of Raman scattering intensity from the Si wafer on the temperature of annealing of SiNx/Si structures was revealed. This information was used to explain the phase transformations in SRSNs during high temperature treatments. The peculiarities of photoluminescence (PL) spectra for two sets of Si-rich SiNx films are explained taking into account the contribution from the quantum confinement effect of Si nanocrystals and from the native defects in silicon nitride matrix, such as N- and K-centers
ΠΡΠΎΡΠ΅ΡΡΡ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ ΡΠ²Π΅ΡΠΎΠΈΠ·Π»ΡΡΠ°ΡΡΠΈΡ ΡΡΡΡΠΊΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΠ½ΠΊΠΈΡ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° ΠΈ Π½ΠΈΡΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ
SiO2 /Si, SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si structures have been fabricated by chemical vapor deposition and thermal oxidation of silicon. The elemental composition and thicknesses of dielectric layers have been studied using Rutherford backscattering spectroscopy, scanning electron microscopy, and spectral ellipsometry. The electroluminescence (EL) of the samples has been investigated in the βelectrolyteβdielectricβsemiconductorβ system at a positive bias voltage applied to the silicon substrate. An intense band with maxima at 1.9 eV appears on the EL spectra of the SiO2 /Si sample, while the EL spectra of the SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si samples are characterized by the presence of bands with the maximum values of 1.9, 2.3 and 2.7 eV. The nature of these bands is discussed. Passing a charge in the range of 100β500 mC/ cm2 through the SiO2 /SiN0.9/SiO2 /Si sample, an increase in the EL intensity was recorded in the entire visible range. Passing a charge of 1 C/cm2 through a sample with a three-layer dielectric film resulted in the EL intensity decrease. It can be explained by the upper oxide layer degradation. It has been shown that silicon nitride deposited on top of the SiO2 layer protects the oxide layer from field degradation and premature breakdown. The most stable electroluminescence when exposed to a strong electric field is observed for the structure SiN1.2/SiO2 /Si.ΠΠ΄Π½ΠΎ-, Π΄Π²ΡΡ
- ΠΈ ΡΡΠ΅Ρ
ΡΠ»ΠΎΠΉΠ½ΡΠ΅ ΡΠ²Π΅ΡΠΎΠΈΠ·Π»ΡΡΠ°ΡΡΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ SiO2 /Si, SiN1,2/SiO2 /Si ΠΈ SiO2 /SiN0,9/SiO2 /Si ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ Π½Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΡΡ
ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ
p-ΡΠΈΠΏΠ° ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ ΡΠ΅ΡΠΌΠΎΠΎΠΊΡΠΈΠ΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΈ ΡΠΎΠ»ΡΠΈΠ½Ρ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΠΎΠ΅Π² ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ΅Π·Π΅ΡΡΠΎΡΠ΄ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ, ΡΠ°ΡΡΡΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ»Π»ΠΈΠΏΡΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ (ΠΠ) ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° Β«ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡβΠ΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΠΊβΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΒ», ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΠ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² Π³Π°Π»ΡΠ²Π°Π½ΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ. ΠΠ° ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΠ ΠΎΠ±ΡΠ°Π·ΡΠ° SiO2 /Si ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½Π°Ρ ΠΏΠΎΠ»ΠΎΡΠ° Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ 1,9 ΡΠ, ΡΠΏΠ΅ΠΊΡΡΡ ΠΠ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² SiN1,2/SiO2 /Si ΠΈ SiO2 / SiN0,9/SiO2 /Si Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΎΡ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°ΠΌΠΈ ΠΏΡΠΈ 1,9, 2,3 ΠΈ 2,7 ΡΠ. ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΡΠΈΡΠΎΠ΄Π° ΡΡΠΈΡ
ΠΏΠΎΠ»ΠΎΡ. ΠΡΠΎΠΏΡΡΠΊΠ°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π· ΠΎΠ±ΡΠ°Π·Π΅Ρ SiO2 /SiN0,9/SiO2 /Si Π·Π°ΡΡΠ΄Π° Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 100β500 ΠΌΠΠ»/ΡΠΌ2 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΠ Π²ΡΠ΅Ρ
ΡΠ΅Π³ΠΈΡΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΠΎΠ»ΠΎΡ. ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΠΏΡΡΠΊΠ°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ±ΡΠ°Π·Π΅Ρ Ρ ΡΡΠ΅Ρ
ΡΠ»ΠΎΠΉΠ½ΠΎΠΉ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΎΠΉ Π·Π°ΡΡΠ΄Π° Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 1 ΠΠ»/ΡΠΌ2 ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΠ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΎ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠ΅ΠΉ Π²Π΅ΡΡ
Π½Π΅Π³ΠΎ ΡΠ»ΠΎΡ ΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Π½ΠΈΡΡΠΈΠ΄ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ²Π΅ΡΡ
ΡΠ»ΠΎΡ SiO2 , ΠΏΡΠ΅Π΄ΠΎΡ
ΡΠ°Π½ΡΠ΅Ρ ΡΠ»ΠΎΠΉ SiO2 ΠΎΡ ΠΏΠΎΠ»Π΅Π²ΠΎΠΉ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ ΠΈ ΠΏΡΠ΅ΠΆΠ΄Π΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ±ΠΎΡ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠ΅ΠΉ ΠΏΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΡΡΡΠΊΡΡΡΠ° SiN1,2/SiO2 /Si
- β¦