67 research outputs found

    Creation of nanoporous SiO2/Si with precipitated Zn using track technology

    Get PDF

    Creation of nanoporous SiO2/Si with precipitated Zn using track technology

    Get PDF

    Structure and optical properties of silicon layers with GaSb nanocrystals created by ion-beam synthesis

    Get PDF
    We have studied the ion-beam synthesis of GaSb nanocrystals in Si by high-fluence implantation of Sb and Ga ions followed by thermal annealing. RBS, TEM/TED, RS, and photoluminescence (PL) were employed to characterize the implanted layers. It was found that the nanocrystals size increases from 5 to 60 nm in the samples annealed at 900 8Cup to 20–90 nm in the samples annealed at 1100 8C. An existence of significant mechanical stresses within implanted layers has been detected. The stress values have been calculated from the shift of the Si first order Raman band. For the samples annealed at 900 8C a broad band in the spectral region of about 0.75–1.05 eV is detected in the PL spectra. The nature of this PL band is discussed

    Nanocrystal- and Dislocation-Related Luminescence in Si Matrix with InAs Nanocrystals

    Get PDF
    We have studied the influence of ion implantation and post-implantation annealing regimes on the structural and optical properties of silicon matrix with ion-beam synthesized InAs nanocrystals. (100) Si wafers were implanted at 25 and 500 Β±C, subsequently with high fluences of As and In ions. After implantation the samples were processed by furnace and rapid thermal annealing at 900, 950 and 1050 Β±C. A part of the samples implanted at 25 Β±C was additionally exposed to H+2 ions (100 keV, 1.2 Γ— 1016 cmβˆ’2 in terms of atomic hydrogen). This procedure was performed to obtain an internal getter. In order to characterize the implanted samples transmission electron microscopy and low-temperature photoluminescence techniques were employed. It was demonstrated that by introducing getter, varying the ion implantation temperature, ion fluences and post-implantation annealing duration, and temperature it is possible to form InAs nanocrystals in the range of sizes of 2–80 nm and create various concentration and distribution of diΛ™erent types of secondary defects. The last ones cause in turn the appearance in photoluminescence spectra dislocation-related D1, D2 and D4 lines at 0.807, 0.870 and 0.997 eV, respectively

    Ion Beam Synthesis of InAs Nanocrystals in Crystalline Silicon

    Get PDF
    The formation of nanodimensional InAs crystallites on Si wafers was studied by the method of high fluence implantation of As and In ions with subsequent high temperature treatment. It was found that the size and depth distributions of the crystallites depend on both the implantation temperature and the annealing conditions. A broad band in an energy range of 0.75–1.1 eV was recorded in the photolumines cence spectra of the samples

    Structure and Optical Properties of Silicon Layers with GaSb Nanocrystals Created by Ion-Beam Synthesis

    Get PDF
    We have studied the ion-beam synthesis of GaSb nanocrystals in Si by high-fluence β€œhot” implantation of Sb and Ga ions followed by thermal annealing. The Rutherford backscattering, transmission electron microscopy/ transmission electron diΛ™raction, Raman spectroscopy and photoluminescence were used to characterize the implanted layers. It was found that the nanocrystal size increases from 5 to 60 nm in the samples annealed at 900 Β±C up to 20–90 nm in those annealed at 1100 Β±C. For the samples annealed at 900 Β±C a broad band in the region of 0.75–1.05 eV is registered in the photoluminescence spectra. The nature of this photoluminescence band is discussed

    A New Nanoporous Material Based on Amorphous Silicon Dioxide

    Get PDF
    Processes for making nanoporous SiO2 layers on Si via the irradiation of thermally oxidized silicon wafers with fast ions followed by chemical treatment in a solution or vapor of hydrofluoric acid are presented. It is shown that the density, shape, diameter, and length to diameter ratio of channels etched in silicon dioxide can be controlled by varying the regimes of fast ion irradiation or chemical treatment of SiO2/Si structures. Track parameters calculated using the thermal spike model are compared with the chemical etching data

    Structure changes in InP and GaAs crystals double irradiated with electrons and swift heavy ions

    No full text
    We have studied InP and GaAs crystal structure changes under the influence of swift Kr and Bi ions irradiation by means of scanning electron microscopy, atomic force microscopy and selective chemical etching. The previous disordering of samples by electron irradiation is shown to be leading to macrodefect formation in the form of cracks and breaks at the depths near the ion end-of-range and on the crystal surface. A possible explanation of the observed effects is proposed.Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Π·ΠΌΡ–Π½ структури Π†nP Ρ– GaAs ΠΏΡ€ΠΈ ΠΎΠΏΡ€ΠΎΠΌΡ–Π½Π΅Π½Π½Ρ– Ρ–ΠΎΠ½Π°ΠΌΠΈ Kr Ρ– BΡ– ΠΉ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°ΠΌΠΈ ΠΏΡ€ΠΈ Π²ΠΈΠ²Ρ‡Π΅Π½Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— мікроскопії, Π°Ρ‚ΠΎΠΌΠ½ΠΎΡ— силової мікроскопії ΠΉ сСктивного Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ травлСння. Основними Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π²ΠΏΠ»ΠΈΠ²Ρ– Π±ΡƒΠ»ΠΈ утворСння Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½ Ρ– Ρ€ΡƒΠΉΠ½ΡƒΠ²Π°Π½ΡŒ структури ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–, які Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠ΅ Π·Π½Π°Ρ‡Π½ΠΎ проявлялися Π½Π°ΠΏΡ€ΠΈΠΊΡ–Π½Ρ†Ρ– ΠΏΡ€ΠΎΠ±Ρ–Π³Ρƒ Ρ–ΠΎΠ½Ρ–Π² Ρ– ΠΏΠΎΠ±Π»ΠΈΠ·Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–. МоТливС пояснСння виявлСних Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² прСдставлСно.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ структуры InP- ΠΈ GaAs- ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΈΠΎΠ½Π°ΠΌΠΈ Kr ΠΈ Bi ΠΈ элСктронами ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктронной микроскопии, Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ силовой микроскопии ΠΈ сСктивного химичСского травлСния. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ эффСктами ΠΏΡ€ΠΈ этом воздСйствии являлись ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ структуры повСрхности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡΠ²Π»ΡΠ»ΠΈΡΡŒ Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΏΡ€ΠΎΠ±Π΅Π³Π° ΠΈΠΎΠ½ΠΎΠ² ΠΈ Π²Π±Π»ΠΈΠ·ΠΈ повСрхности. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ объяснСниС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹Ρ… эффСктов прСдставлСно

    Raman study of light-emitting SiNx films grown on Si by low-pressure chemical vapor deposition

    Get PDF
    Si-rich silicon nitride (SRSN) films were deposited on Si wafers by low pressure chemical vapor deposition (LPCVD) technique and, subsequently, annealed at (800–1200) Β°C to form Si precipitates. The composition of SiNx films was measured by Rutherford backscattering spectrometry (RBS). Two sets of samples differed by the amount of excessive Si (Siexc) in silicon nitride were studied. Evolution of Si nanoclusters from amorphous to crystalline ones during high temperature treatment was examined by Raman scattering (RS) spectroscopy. The amorphous Si clusters were already revealed in as-deposited SiNx while the annealing results in their crystallization. The crystalline nanoprecipitates are only registered in nitride films after annealing at 1200 Β°C. A dependence of Raman scattering intensity from the Si wafer on the temperature of annealing of SiNx/Si structures was revealed. This information was used to explain the phase transformations in SRSNs during high temperature treatments. The peculiarities of photoluminescence (PL) spectra for two sets of Si-rich SiNx films are explained taking into account the contribution from the quantum confinement effect of Si nanocrystals and from the native defects in silicon nitride matrix, such as N- and K-centers

    ΠŸΡ€ΠΎΡ†Π΅ΡΡΡ‹ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… структур Π½Π° основС Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ оксида ΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° крСмния

    Get PDF
    SiO2 /Si, SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si structures have been fabricated by chemical vapor deposition and thermal oxidation of silicon. The elemental composition and thicknesses of dielectric layers have been studied using Rutherford backscattering spectroscopy, scanning electron microscopy, and spectral ellipsometry. The electroluminescence (EL) of the samples has been investigated in the β€œelectrolyte–dielectric–semiconductor” system at a positive bias voltage applied to the silicon substrate. An intense band with maxima at 1.9 eV appears on the EL spectra of the SiO2 /Si sample, while the EL spectra of the SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si samples are characterized by the presence of bands with the maximum values of 1.9, 2.3 and 2.7 eV. The nature of these bands is discussed. Passing a charge in the range of 100–500 mC/ cm2 through the SiO2 /SiN0.9/SiO2 /Si sample, an increase in the EL intensity was recorded in the entire visible range. Passing a charge of 1 C/cm2 through a sample with a three-layer dielectric film resulted in the EL intensity decrease. It can be explained by the upper oxide layer degradation. It has been shown that silicon nitride deposited on top of the SiO2 layer protects the oxide layer from field degradation and premature breakdown. The most stable electroluminescence when exposed to a strong electric field is observed for the structure SiN1.2/SiO2 /Si.Одно-, Π΄Π²ΡƒΡ…- ΠΈ трСхслойныС ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ SiO2 /Si, SiN1,2/SiO2 /Si ΠΈ SiO2 /SiN0,9/SiO2 /Si ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… p-Ρ‚ΠΈΠΏΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ химичСского осаТдСния ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΈ тСрмооксидирования крСмния. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ состав ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ диэлСктричСских слоСв ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ рСзСрфордовского ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния, растровой элСктронной микроскопии ΠΈ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ эллипсомСтрии. Для изучСния ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ (Π­Π›) использовалась систСма «элСктролит–диэлСктрик–полупроводник», рСгистрация спСктров Π­Π› ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ смСщСнии ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ. На спСктрах Π­Π› ΠΎΠ±Ρ€Π°Π·Ρ†Π° SiO2 /Si проявляСтся интСнсивная полоса с максимумом 1,9 эВ, спСктры Π­Π› ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² SiN1,2/SiO2 /Si ΠΈ SiO2 / SiN0,9/SiO2 /Si Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ полос с максимумами ΠΏΡ€ΠΈ 1,9, 2,3 ΠΈ 2,7 эВ. ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° этих полос. ΠŸΡ€ΠΎΠΏΡƒΡΠΊΠ°Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ±Ρ€Π°Π·Π΅Ρ† SiO2 /SiN0,9/SiO2 /Si заряда Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 100–500 мКл/см2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ интСнсивности Π­Π› всСх рСгистрируСмых полос. ПослС пропускания Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ±Ρ€Π°Π·Π΅Ρ† с трСхслойной диэлСктричСской ΠΏΠ»Π΅Π½ΠΊΠΎΠΉ заряда Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ 1 Кл/см2 ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π­Π› ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ объяснСно Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠ΅ΠΉ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ слоя оксида крСмния. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π½ΠΈΡ‚Ρ€ΠΈΠ΄ крСмния, нанСсСнный ΠΏΠΎΠ²Π΅Ρ€Ρ… слоя SiO2 , прСдохраняСт слой SiO2 ΠΎΡ‚ ΠΏΠΎΠ»Π΅Π²ΠΎΠΉ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ пробоя. НаиболСС ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠ΅ΠΉ ΠΏΡ€ΠΈ воздСйствии сильного элСктричСского поля характСризуСтся структура SiN1,2/SiO2 /Si
    • …
    corecore