138 research outputs found

    Fast Collisionless Reconnection Condition and Self-Organization of Solar Coronal Heating

    Full text link
    I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet-Parker regime and the fast collisionless reconnection regime. This transition takes place when the Sweet--Parker layer becomes thinner than the characteristic collisionless reconnection scale. I present a simple criterion for this transition in terms of the upstream plasma density (n_e), the reconnecting (B_0) and guide (B_z) magnetic field components, and the global length (L) of the reconnection layer: L < 6.10^9 cm [n_e/(10^{10}/cm^3)]^(-3) (B_0/30G)^4 (B_0/B_z)^2. Next, coronal energy release by reconnection raises the ambient plasma density via chromospheric evaporation and this, in turn, temporarily inhibits subsequent reconnection involving the newly-reconnected loops. Over time, however, radiative cooling gradually lowers the density again below the critical value and fast reconnection again becomes possible. As a result, the density is highly inhomogeneous and intermittent but, statistically, does not deviate strongly from the critical value which is comparable with the observed coronal density. Thus, in the long run, the coronal heating process can be represented by repeating cycles that consist of fast reconnection events (i.e., nanoflares), followed by rapid evaporation episodes, followed by relatively long periods (1-hour) during which magnetic stresses build up and simultaneously the plasma cools down and precipitates.Comment: 17 pages, no figures; accepted to the Astrophysical Journal; replaced to match the accepted versio

    Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation

    Full text link
    We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs) and associated giant arcade formations, and the results suggested new interpretations of observations of CMEs. We performed two cases of the simulation: with and without heat conduction. Comparing between the results of the two cases, we found that reconnection rate in the conductive case is a little higher than that in the adiabatic case and the temperature of the loop top is consistent with the theoretical value predicted by the Yokoyama-Shibata scaling law. The dynamical properties such as velocity and magnetic fields are similar in the two cases, whereas thermal properties such as temperature and density are very different.In both cases, slow shocks associated with magnetic reconnectionpropagate from the reconnection region along the magnetic field lines around the flux rope, and the shock fronts form spiral patterns. Just outside the slow shocks, the plasma density decreased a great deal. The soft X-ray images synthesized from the numerical results are compared with the soft X-ray images of a giant arcade observed with the Soft X-ray Telescope aboard {\it Yohkoh}, it is confirmed that the effect of heat conduction is significant for the detailed comparison between simulation and observation. The comparison between synthesized and observed soft X-ray images provides new interpretations of various features associated with CMEs and giant arcades.Comment: 39 pages, 18 figures. Accepted for publication in the Astrophysical Journal. The PDF file with high resplution figures can be downloaded from http://www.kwasan.kyoto-u.ac.jp/~shiota/study/ApJ62426.preprint.pdf

    Plasmoid-Induced-Reconnection and Fractal Reconnection

    Get PDF
    As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the induction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current sheet tends to have a fractal structure via the following process path: tearing, sheet thinning, Sweet- Parker sheet, secondary tearing, further sheet thinning... These processes occur repeatedly at smaller scales until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in press; ps-file is also available at http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001

    Evaluation of adenovirus capsid labeling versus transgene expression

    Get PDF
    Adenoviral vectors have been utilized for a variety of gene therapy applications. Our group has incorporated bioluminescent, fluorographic reporters, and/or suicide genes within the adenovirus genome for analytical and/or therapeutic purposes. These molecules have also been incorporated as capsid components. Recognizing that incorporations at either locale yield potential advantages and disadvantages, our report evaluates the benefits of transgene incorporation versus capsid incorporation. To this end, we have genetically incorporated firefly luciferase within the early region 3 or at minor capsid protein IX and compared vector functionality by means of reporter readout

    Innocent Frauds Meet Goodhart’s Law in Monetary Policy

    Get PDF
    This paper discusses recent UK monetary policies as instances of Galbraith’s ‘innocent frauds’, including the idea that money is a thing rather than a relationship, the fallacy of composition that what is possible for one bank is possible for all banks, and the belief that the money supply can be controlled by reserves management. The origins of the idea of QE, and its defense when it was applied in Britain, are analysed through this lens. An empirical analysis of the effect of reserves on lending is conducted; we do not find evidence that QE ‘worked’ either by a direct effect on money spending, or through an equity market effect. These findings are placed in a historical context in a comparison with earlier money control experiments in the UK

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    Derivation of a Triple Mosaic Adenovirus for Cancer Gene Therapy

    Get PDF
    A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad) vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK), the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK), and the monomeric red fluorescent protein (mRFP1) as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX). In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors

    Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures

    Full text link
    Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 x 10(-23) and p = 6 x 10(-11), respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers. Germline biallelic pathogenic MUTYH variants predispose patients to colorectal cancer (CRC); however, approaches to identify MUTYH variant carriers are lacking. Here, the authors evaluated mutational signatures that could distinguish MUTYH carriers in large CRC cohorts, and found MUTYH-associated somatic mutations
    • …
    corecore