538 research outputs found

    Relation between Light Cone Distribution Amplitudes and Shape Function in B mesons

    Full text link
    The Bakamjian-Thomas relativistic quark model provides a Poincar\'e representation of bound states with a fixed number of constituents and, in the heavy quark limit, form factors of currents satisfy covariance and Isgur-Wise scaling. We compute the Light Cone Distribution Amplitudes of BB mesons ϕ±B(ω)\phi_{\pm}^B(\omega) as well as the Shape Function S(ω)S(\omega), that enters in the decay BXsγB \to X_s \gamma, that are also covariant in this class of models. The LCDA and the SF are related through the quark model wave function. The former satisfy, in the limit of vanishing constituent light quark mass, the integral relation given by QCD in the valence sector of Fock space. Using a gaussian wave function, the obtained S(ω)S(\omega) is identical to the so-called Roman Shape Function. From the parameters for the latter that fit the BXsγB \to X_s\gamma spectrum we predict the behaviour of ϕ±B(ω)\phi_{\pm}^B(\omega). We discuss the important role played by the constituent light quark mass. In particular, although ϕB(0)0\phi_-^B(0) \not= 0 for vanishing light quark mass, a non-vanishing mass implies the unfamiliar result ϕB(0)=0\phi_-^B (0) = 0. Moreover, we incorporate the short distance behaviour of QCD to ϕ+B(ω)\phi_+^B (\omega), which has sizeable effects at large ω\omega. We obtain the values for the parameters Λˉ0.35\bar{\Lambda} \cong 0.35 GeV and λB11.43\lambda_B^{-1} \cong 1.43 GeV1^{-1}. We compare with other theoretical approaches and illustrate the great variety of models found in the literature for the functions ϕ±B(ω)\phi_{\pm}^B (\omega); hence the necessity of imposing further constraints as in the present paper. We briefly review also the different phenomena that are sensitive to the LCDA.Comment: 6 figure

    Relativistic quantum theories and neutrino oscillations

    Full text link
    Neutrino oscillations are examined under the broad requirements of Poincar\'e-invariant scattering theory in an S-matrix formulation. This approach can be consistently applied to theories with either field or particle degrees of freedom. The goal of this paper is to use this general framework to identify all of the unique physical properties of this problem that lead to a simple oscillation formula. We discuss what is in principle observable, and how many factors that are important in principle end up being negligible in practice.Comment: 21 pages, no figure

    Axial-vector mesons in a relativistic point-form approach

    Full text link
    The Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange, which has been developed and applied to vector mesons in Ref. [1] is applied to axial vector mesons. We thereby extend the previous study of a dynamical treatment of the Goldstone-boson exchange by comparison with the commonly used instantaneous approximation to the case of orbital angular momentum l=1. Effects in the mass shifts show more variations than for the vector-meson case. Results for the decay widths are sizable, but comparison with sparse experimental data is inconclusive.Comment: 4 pages, 1 figur

    Rotational covariance and light-front current matrix elements

    Full text link
    Light-front current matrix elements for elastic scattering from hadrons with spin~1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ\rho meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements.Comment: 16 pages, [no number

    Mimesis stories: composing new nature music for the shakuhachi

    Get PDF
    Nature is a widespread theme in much new music for the shakuhachi (Japanese bamboo flute). This article explores the significance of such music within the contemporary shakuhachi scene, as the instrument travels internationally and so becomes rooted in landscapes outside Japan, taking on the voices of new creatures and natural phenomena. The article tells the stories of five compositions and one arrangement by non-Japanese composers, first to credit composers’ varied and personal responses to this common concern and, second, to discern broad, culturally syncretic traditions of nature mimesis and other, more abstract, ideas about the naturalness of sounds and creative processes (which I call musical naturalism). Setting these personal stories and longer histories side by side reveals that composition creates composers (as much as the other way around). Thus it hints at much broader terrain: the refashioning of human nature at the confluence between cosmopolitan cultural circulations and contemporary encounters with the more-than-human world

    The Balian-Br\'ezin Method in Relativistic Quantum Mechanics

    Full text link
    The method suggested by Balian and Br\'ezin for treating angular momentum reduction in the Faddeev equations is shown to be applicable to the relativistic three-body problem.Comment: 14 pages in LaTe

    Spatial distributions in static heavy-light mesons: a comparison of quark models with lattice QCD

    Full text link
    Lattice measurements of spatial distributions of the light quark bilinear densities in static mesons allow to test directly and in detail the wave functions of quark models. These distributions are gauge invariant quantities directly related to the spatial distribution of wave functions. We make a detailed comparison of the recent lattice QCD results with our own quark models, formulated previously for quite different purposes. We find a striking agreement not only between our two quark models, but also with the lattice QCD data for the ground state in an important range of distances up to about 4/GeV. Moreover the agreement extends to the L=1 states [j^P=(1/2)^+]. An explanation of several particular features completely at odds with the non-relativistic approximation is provided. A rather direct, somewhat unexpected and of course approximate relation between wave functions of certain quark models and QCD has been established.Comment: 40 pages, 5 figures (version published in PRD

    Deuteron tensor polarization component T_20(Q^2) as a crucial test for deuteron wave functions

    Get PDF
    The deuteron tensor polarization component T_20(Q^2) is calculated by relativistic Hamiltonian dynamics approach. It is shown that in the range of momentum transfers available in to-day experiments, relativistic effects, meson exchange currents and the choice of nucleon electromagnetic form factors almost do not influence the value of T_20(Q^2). At the same time, this value depends strongly on the actual form of the deuteron wave function, that is on the model of NN-interaction in deuteron. So the existing data for T_20(Q^2) provide a crucial test for deuteron wave functions.Comment: 11 pages, 3 figure

    Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes

    Full text link
    The cross section of hard semi-exclusive A(e,eN)(A1)A(e,e'N)(A-1) reactions for fixed missing energy and momentum is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant dependence of the final state interactions on the missing energy is found, which is important for interpretation of forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where the contribution of short-range nucleon correlations is enhanced in semi-exclusive knock-out processes is derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and psfig.sty. Revisied version to appear in Phys. Rev.

    Solving the inhomogeneous Bethe-Salpeter equation

    Full text link
    We develop an advanced method of solving homogeneous and inhomogeneous Bethe-Salpeter equations by using the expansion over the complete set of 4-dimensional spherical harmonics. We solve Bethe-Salpeter equations for bound and scattering states of scalar and spinor particles for the case of one meson exchange kernels. Phase shifts calculated for the scalar model are in agreement with the previously published results. We discuss possible manifestations of separability for one meson exchange interaction kernels.Comment: 9 pages, 11 eps-figures. Talk presented by S. S. Semikh at XVII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", September 27 - October 2, 2004, Dubna, Russia; to appear in the proceedings of this conferenc
    corecore