594 research outputs found

    Role of laser contrast and foil thickness in target normal sheath acceleration

    Get PDF
    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×1019 W/cm2. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process

    Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing

    Get PDF
    Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {\it et.~al.}, Applied Optics {\bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {\bf 199}, pp 143-148 (2001)) have been proposed. In this paper we apply both methods to a sample laser-plasma interferogram obtained with femtoseconds probe pulse, in an experimental setup devoted to laser particle acceleration studies.Comment: Submitted to Laser and Particle Beam

    A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics

    Get PDF
    Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction–diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters’ space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.ELKARTEK KK-2020/0000

    The Impact of Future Orientation on the Avoidance of Teen Pregnancy

    Get PDF
    This study explores the relationship between future orientation and teens’ attitudes about pregnancy and avoidance behaviors. Participants were 91 adolescents, ages 15-19, surveyed using measures developed for this study that examined future orientation, attitudes to avoiding pregnancy, child-rearing responsibility, and perceptions about teen parenting. The results suggested that finishing high school was important in predicting a desire to avoid pregnancy. The perception that a teen pregnancy would make it difficult to achieve post-high school educational goals, specifically a college education, was also found to be important. Implications for school counselors and mental health professionals are discussed. Issues specific to non college-bound students are addressed

    A numerical model of the human cornea accounting for the fiber-distributed collagen microstructure

    Get PDF
    We present a fiber-distributed model of the reinforcing collagen of the human cornea. The model describes the basic connections between the components of the tissue by defining an elementary block (cell) and upscaling it to the physical size of the cornea. The cell is defined by two sets of collagen fibrils running in approximately orthogonal directions, characterized by a random distribution of the spatial orientation and connected by chemical bonds of two kinds. The bonds of the first kind describe the lamellar crosslinks, forming the ribbon-like lamellae; while the bonds of the second kind describe the stacking crosslinks, piling up the lamellae to form the structure of the stroma. The spatial replication of the cell produces a truss structure with a considerable number of degrees of freedom. The statistical characterization of the collagen fibrils leads to a mechanical model that reacts to the action of the deterministic intraocular pressure with a stochastic distribution of the displacements, here characterized by their mean value and variance. The strategy to address the solution of the heavy resulting numerical problem is to use the so-called stochastic finite element improved perturbation method combined with a fully explicit solver. Results demonstrate that the variability of the mechanical properties affects in a non-negligible manner the expected response of the structure to the physiological action

    Myofascial trigger points alter the modular control during the execution of a reaching task: a pilot study

    Get PDF
    Myofascial trigger points (TP) constitute a conundrum in research and clinical practice as their etiopathogenesis is debated. Several studies investigating one or few muscles have shown that both active and latent TP causes an increased muscle activity, however the influence of TP on modular motor control during a reaching task is still unclear. Electromyographic signals, recorded from the muscles of the shoulder girdle and upper arm during a reaching task, were decomposed with Non-Negative Matrix Factorization algorithm. The extracted matrices of motor modules and activation signals were used to label the muscles condition as dominant or non-dominant. The presence of latent and active TP was detected in each muscle with manual examination. Despite a similar muscle activity was observed, we found that muscles with active TP had increased weighting coefficients when labeled in the dominant condition. No influences were found when muscles were in the non-dominant condition. These findings suggest that TP altered the motor control without co-contraction patterns. As a preliminary evidence, the present results suggest that the increased weighting coefficients in presence of TPs are associated with an alteration of the modular motor control without affecting the dimensionality of motor modules for each individual and reciprocal inhibition
    • …
    corecore