67 research outputs found

    Chronic Apocynin Treatment Attenuates Beta Amyloid Plaque Size and Microglial Number in hAPP(751)SL Mice

    Get PDF
    Background: NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer’s Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751)SL). Methods: Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. Results: Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin) demonstrated low levels of TNFa, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Ab-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels (plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Ab) phagocytosis, microglial proliferation, or microglial survival. Conclusions: Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional therapeutic effects independent of anti-inflammatory characteristics

    Carbolincum

    No full text

    Zur Untersuchung von Schweinfurter Gr�n

    No full text

    Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins

    No full text
    Hydrophobic proteins are difficult to analyze by two-dimensional electrophoresis (2-DE) because of their intrinsic tendency to self-aggregate during the first dimension (isoelectric focusing, IEF) or the equilibration steps. This aggregation renders their redissolution for the second dimension uncertain and results in the reduction of the number and intensity of protein spots, and in undesirable vertical and horizontal streaks across gels. Trifluoroethanol (TFE) is traditionally used at high concentration to solubilize peptides and proteins for NMR studies. Depending upon its concentration, TFE strongly affects the three-dimensional structure of proteins. We report here a phase separation system based on TFE/CHCl(3), which is able to extract a number of intrinsic membrane proteins. The addition of TFE in the in-gel sample rehydration buffer to improve membrane protein IEF separation is also presented. The procedure using urea, thiourea, and sulfobetaine as chaotropic agents was modified by the addition of TFE and removing of sulfobetaine at an optimized concentration in the solubilization medium used for the first dimension. When using membrane fractions isolated from Escherichia coli, the intensity and the number of spots detected from 2-DE gels that used TFE in the solubilization medium were significantly increased. The majority of the proteins identified using peptide mass fingerprinting and tandem mass spectrometry (MS/MS) were intrinsic membrane proteins, proteins of beta barrel structure or transmembrane proteins
    • …
    corecore