22,734 research outputs found

    The calibration and flight test performance of the space shuttle orbiter air data system

    Get PDF
    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work

    Limits on the Doppler factor in relativistic jets by means of gamma-ray observations

    Get PDF
    A new, simple and potentially useful method for constraining the kinematical parameters of relativistic jets based on gamma ray spectral measurements of Active Galaxies is presented. The application of this method to the Quasar 3C273 leads to a value of the Doppler factor of 3 to 4. This corresponds to jet parameters of mu 2 and theta 15 deg in good agreement with the values estimated independently from radio observations of superluminal motion. For the particular case of 3C273, the results are also compared to those given by a similar technique based on the comparison of the X-ray observational data with the synchrotron self Compton prediction from radio measurements. The application of the proposed technique to a significant sample of active galaxies as a result of future gamma ray surveys of the sky is briefly discussed, particularly with respect to possible ways to constrain the cosmological constants H sub o and q sub o

    Recommendation Subgraphs for Web Discovery

    Full text link
    Recommendations are central to the utility of many websites including YouTube, Quora as well as popular e-commerce stores. Such sites typically contain a set of recommendations on every product page that enables visitors to easily navigate the website. Choosing an appropriate set of recommendations at each page is one of the key features of backend engines that have been deployed at several e-commerce sites. Specifically at BloomReach, an engine consisting of several independent components analyzes and optimizes its clients' websites. This paper focuses on the structure optimizer component which improves the website navigation experience that enables the discovery of novel content. We begin by formalizing the concept of recommendations used for discovery. We formulate this as a natural graph optimization problem which in its simplest case, reduces to a bipartite matching problem. In practice, solving these matching problems requires superlinear time and is not scalable. Also, implementing simple algorithms is critical in practice because they are significantly easier to maintain in production. This motivated us to analyze three methods for solving the problem in increasing order of sophistication: a sampling algorithm, a greedy algorithm and a more involved partitioning based algorithm. We first theoretically analyze the performance of these three methods on random graph models characterizing when each method will yield a solution of sufficient quality and the parameter ranges when more sophistication is needed. We complement this by providing an empirical analysis of these algorithms on simulated and real-world production data. Our results confirm that it is not always necessary to implement complicated algorithms in the real-world and that very good practical results can be obtained by using heuristics that are backed by the confidence of concrete theoretical guarantees

    Tapping Thermodynamics of the One Dimensional Ising Model

    Full text link
    We analyse the steady state regime of a one dimensional Ising model under a tapping dynamics recently introduced by analogy with the dynamics of mechanically perturbed granular media. The idea that the steady state regime may be described by a flat measure over metastable states of fixed energy is tested by comparing various steady state time averaged quantities in extensive numerical simulations with the corresponding ensemble averages computed analytically with this flat measure. The agreement between the two averages is excellent in all the cases examined, showing that a static approach is capable of predicting certain measurable properties of the steady state regime.Comment: 11 pages, 5 figure

    Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback

    Full text link
    The recently demonstrated control over light distribution through turbid media based on real-time three-dimensional optoacoustic feedback has offered promising prospects to interferometrically focus light within scattering objects. Nevertheless, the focusing capacity of the feedback-based approach is strongly conditioned by the number of effectively resolvable optical modes (speckles). In this letter, we experimentally tested the light intensity enhancement achieved with optoacoustic feedback measurements from different sizes of absorbing microparticles. The importance of the obtained results is discussed in the context of potential signal enhancement at deep locations within a scattering medium where the effective speckle sizes approach the minimum values dictated by optical diffraction

    A computationally efficacious free-energy functional for studies of inhomogeneous liquid water

    Full text link
    We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields a computationally efficient free-energy functional for inhomogeneous water which captures short-ranged correlations, cavitation energies and, with suitable long-range corrections, the non-linear dielectric response of water, making it an excellent candidate for studies of mesoscale water and for use in ab initio solvation methods.Comment: 6 pages, 5 figure

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Monitoring the Impact of Health Care Reforms on Americans 50-64: Awareness and Coverage Expectations

    Get PDF
    This survey found widespread awareness among Americans ages 50 to 64 about the new health insurance Marketplace that had been created by the Affordable Care Act (ACA). Those with the most to gain from the ACA -- the uninsured and those with nongroup (individual) insurance -- expressed the greatest interest in using the Marketplace to learn about new coverage options. Most of those already insured expected to keep their same source of coverage in 2014, whereas the uninsured had mixed expectations. This paper is part of a series that looks at the experiences of 50- to 64-year-olds during the ACA's first open enrollment period

    Superfluidity and excitations at unitarity

    Full text link
    We present lattice results for spin-1/2 fermions at unitarity, where the effective range of the interaction is zero and the scattering length is infinite. We measure the spatial coherence of difermion pairs for a system of 6, 10, 14, 18, 22, 26 particles with equal numbers of up and down spins in a periodic cube. Using Euclidean time projection, we analyze ground state properties and transient behavior due to low-energy excitations. At asymptotically large values of t we see long-range order consistent with spontaneously broken U(1) fermion-number symmetry and a superfluid ground state. At intermediate times we see exponential decay in the t-dependent signal due to an unknown low-energy excitation. We probe this low-energy excitation further by calculating two-particle correlation functions. We find that the excitation has the properties of a chain of particles extending across the periodic lattice.Comment: 40 pages, 19 figures, revised version includes new data on two-particle density correlation
    • …
    corecore