16,621 research outputs found

    Oblique triangular antiferromagnetic phase in CsCu1−x_{1-x}Cox_xCl3_3

    Full text link
    The spin-1/2 stacked triangular antiferromagnet CsCu1−x_{1-x}Cox_xCl3_3 with 0.015<x<0.0320.015<x<0.032 undergoes two phase transitions at zero field. The low-temperature phase is produced by the small amount of Co2+^{2+} doping. In order to investigate the magnetic structures of the two ordered phases, the neutron elastic scattering experiments have been carried out for the sample with x≈0.03x\approx 0.03. It is found that the intermediate phase is identical to the ordered phase of CsCuCl3_3, and that the low-temperature phase is an oblique triangular antiferromagnetic phase in which the spins form a triangular structure in a plane tilted from the basal plane. The tilting angle which is 42∘^{\circ} at T=1.6T=1.6 K decreases with increasing temperature, and becomes zero at TN2=7.2T_{\rm N2} =7.2 K. An off-diagonal exchange term is proposed as the origin of the oblique phase.Comment: 6 pages, 7 figure

    Differential equations for the cuspoid canonical integrals

    Get PDF
    Differential equations satisfied by the cuspoid canonical integrals I_n(a) are obtained for arbitrary values of n≥2, where n−1 is the codimension of the singularity and a=(ɑ_1,ɑ_2,...,ɑ_(n−1)). A set of linear coupled ordinary differential equations is derived for each step in the sequence I_n(0,0,...,0,0) →I_n(0,0,...,0,ɑ_(n−1)) →I_n(0,0,...,ɑ_(n−2),ɑ_(n−1)) →...→I_n(0,ɑ_2,...,ɑ_(n−2),ɑ_(n−1)) →I_n(ɑ_1,ɑ_2,...,ɑ_n−2,ɑ_(n−1)). The initial conditions for a given step are obtained from the solutions of the previous step. As examples of the formalism, the differential equations for n=2 (fold), n=3 (cusp), n=4 (swallowtail), and n=5 (butterfly) are given explicitly. In addition, iterative and algebraic methods are described for determining the parameters a that are required in the uniform asymptotic cuspoid approximation for oscillating integrals with many coalescing saddle points. The results in this paper unify and generalize previous researches on the properties of the cuspoid canonical integrals and their partial derivatives

    Study of dopants for radiation-resistant silicon Final report

    Get PDF
    Radiation effects on electrical properties of both aluminum and lithium doped bulk silico

    High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    Get PDF
    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\it Chandra} and {\it Swift}/BAT X-ray luminosity functions \citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by {\it IceCube} (by ∼4\sim 4--106×10^6 \times at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Compression of Atomic Phase Space Using an Asymmetric One-Way Barrier

    Full text link
    We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illustrate our method with a simple two-level model and then show how it can be applied to more realistic multi-level atoms

    Equivalence between Kaluza Klein modes of gravitinos and goldstinos in brane induced supersymmetry breaking

    Get PDF
    We identify the goldstino fields that give mass to the Kaluza Klein modes of five dimensional supergravity, when supersymmetry breaking is induced by brane effects. We then proof the four dimensional Equivalence Theorem that, in renormalizable gauges, allows for the replacement of Kaluza Klein modes of helicity ±1/2\pm1/2 gravitinos in terms of goldstinos. Finally we identify the five dimensional renormalizable gauge fixing that leads to the Equivalence Theorem.Comment: Final version published in JHEP. Typo corrected in eq. 2.

    Damage coefficients in low resistivity silicon

    Get PDF
    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed
    • …
    corecore