24,203 research outputs found

    Comment on "Off-diagonal Long-range Order in Bose Liquids: Irrotational Flow and Quantization of Circulation"

    Full text link
    In the context of an application to superfluidity, it is elaborated how to do quantum mechanics of a system with a rotational velocity. Especially, in both the laboratory frame and the non-inertial co-rotating frame, the canonical momentum, which corresponds to the quantum mechanical momentum operator, contains a part due to the rotational velocity.Comment: 2 page, comment on cond-mat/010435

    A heuristic approach to the weakly interacting Bose gas

    Full text link
    Some thermodynamic properties of weakly interacting Bose systems are derived from dimensional and heuristic arguments and thermodynamic relations, without resorting to statistical mechanics

    Nonlinear Landau-Zener Tunnelling in Coupled Waveguide Arrays

    Full text link
    The possibility of direct observation of Nonlinear Landau-Zener tunnelling effect with a device consisting of two waveguide arrays connected with a tilted reduced refractive index barrier is discussed. Numerical simulations on this realistic setup are interpreted via simplified double well system and different asymmetric tunnelling scenarios were predicted just varying injected beam intensity.Comment: 5 pages, 6 figure

    Dynamic Structure Factor of Normal Fermi Gas from Collisionless to Hydrodynamic Regime

    Full text link
    The dynamic structure factor of a normal Fermi gas is investigated by using the moment method for the Boltzmann equation. We determine the spectral function at finite temperatures over the full range of crossover from the collisionless regime to the hydrodynamic regime. We find that the Brillouin peak in the dynamic structure factor exhibits a smooth crossover from zero to first sound as functions of temperature and interaction strength. The dynamic structure factor obtained using the moment method also exhibits a definite Rayleigh peak (/omega/sim0/omega /sim 0), which is a characteristic of the hydrodynamic regime. We compare the dynamic structure factor obtained by the moment method with that obtained from the hydrodynamic equations.Comment: 19 pages, 9 figure

    Generalized Emission Functions for Photon Emission from Quark-Gluon Plasma

    Get PDF
    The Landau-Pomeranchuk-Migdal effects on photon emission from the quark gluon plasma have been studied as a function of photon mass, at a fixed temperature of the plasma. The integral equations for the transverse vector function (f~(p~){\bf \tilde{f}(\tilde{p}_\perp)}) and the longitudinal function (g~(p~)\tilde{g}({\bf \tilde{p}_\perp})) consisting of multiple scattering effects are solved by the self consistent iterations method and also by the variational method for the variable set \{p0,q0,Q2p_0,q_0,Q^2\}, considering the bremsstrahlung and the aws\bf aws processes. We define four new dynamical scaling variables, xTbx^b_T,xTax^a_T,xLbx^b_L,xLax^a_L for bremsstrahlung and {\bf aws} processes and analyse the transverse and longitudinal components as a function of \{p0,q0,Q2p_0,q_0,Q^2\}. We generalize the concept of photon emission function and we define four new emission functions for massive photon emission represented by gTbg^b_T, gTag^a_T, gLbg^b_L, gLag^a_L. These have been constructed using the exact numerical solutions of the integral equations. These four emission functions have been parameterized by suitable simple empirical fits. In terms of these empirical emission functions, the virtual photon emission from quark gluon plasma reduces to one dimensional integrals that involve folding over the empirical gT,Lb,ag^{b,a}_{T,L} functions with appropriate quark distribution functions and the kinematic factors. Using this empirical emission functions, we calculated the imaginary part of the photon polarization tensor as a function of photon mass and energy.Comment: In nuclear physics journals and arxiv listings, my name used to appear as S.V.S. Sastry. Hereafter, my name will appear as, S.V. Suryanarayan

    The bound on viscosity and the generalized second law of thermodynamics

    Full text link
    We describe a new paradox for ideal fluids. It arises in the accretion of an \textit{ideal} fluid onto a black hole, where, under suitable boundary conditions, the flow can violate the generalized second law of thermodynamics. The paradox indicates that there is in fact a lower bound to the correlation length of any \textit{real} fluid, the value of which is determined by the thermodynamic properties of that fluid. We observe that the universal bound on entropy, itself suggested by the generalized second law, puts a lower bound on the correlation length of any fluid in terms of its specific entropy. With the help of a new, efficient estimate for the viscosity of liquids, we argue that this also means that viscosity is bounded from below in a way reminiscent of the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to entropy density. We conclude that much light may be shed on the Kovtun-Son-Starinets bound by suitable arguments based on the generalized second law.Comment: 11 pages, 1 figure, published versio

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Get PDF
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Equilibrium topology of the intermediate state in type-I superconductors of different shapes

    Full text link
    High-resolution magneto-optical technique was used to analyze flux patterns in the intermediate state of bulk Pb samples of various shapes - cones, hemispheres and discs. Combined with the measurements of macroscopic magnetization these results allowed studying the effect of bulk pinning and geometric barrier on the equilibrium structure of the intermediate state. Zero-bulk pinning discs and slabs show hysteretic behavior due to geometric barrier that results in a topological hysteresis -- flux tubes on penetration and lamellae on flux exit. (Hemi)spheres and cones do not have geometric barrier and show no hysteresis with flux tubes dominating the intermediate field region. It is concluded that flux tubes represent the equilibrium topology of the intermediate state in reversible samples, whereas laminar structure appears in samples with magnetic hysteresis (either bulk or geometric). Real-time video is available in http://www.cmpgroup.ameslab.gov/supermaglab/video/Pb.html NOTE: the submitted images were severely downsampled due to Arxiv's limitations of 1 Mb total size

    Measurement of the complex Faraday angle in thin-film metals and high temperature superconductors

    Full text link
    A sensitive polarization modulation technique uses photoelastic modulation and hetrodyne detection to simultaneously measure the Faraday rotation and induced ellipticity in light transmitted by semiconducting and metallic samples. The frequencies measured are in the mid-infrared and correspond to the spectral lines of a CO2 laser. The measured temperature range is continuous and extends from 35 to 330K. Measured samples include GaAs and Si substrates, gold and copper films, and YBCO and BSCCO high temperature superconductors.Comment: 12 pages of text, 6 figures, fixed typos in formulas, added figur

    Relativistic viscoelastic fluid mechanics

    Get PDF
    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.Comment: 52pages, 11figures; v2: minor corrections; v3: minor corrections, to appear in Physical Review E; v4: minor change
    corecore