7,465 research outputs found

    Branching Interfaces with Infinitely Strong Couplings

    Get PDF
    A hierarchical froth model of the interface of a random qq-state Potts ferromagnet in 2D2D is studied by recursive methods. A fraction pp of the nearest neighbour bonds is made inaccessible to domain walls by infinitely strong ferromagnetic couplings. Energetic and geometric scaling properties of the interface are controlled by zero temperature fixed distributions. For p<pcp<p_c, the directed percolation threshold, the interface behaves as for p=0p=0, and scaling supports random Ising (q=2q=2) critical behavior for all qq's. At p=pc p=p_c three regimes are obtained for different ratios of ferro vs. antiferromagnetic couplings. With rates above a threshold value the interface is linear ( fractal dimension df=1d_f=1) and its energy fluctuations, ΔE\Delta E scale with length as ΔE∝Lω\Delta E\propto L^{\omega}, with ω≃0.48\omega\simeq 0.48. When the threshold is reached the interface branches at all scales and is fractal (df≃1.046d_f\simeq 1.046) with ωc≃0.51\omega_c \simeq 0.51. Thus, at pcp_c, dilution modifies both low temperature interfacial properties and critical scaling. Below threshold the interface becomes a probe of the backbone geometry (\df\simeq{\bar d}\simeq 1.305; dˉ\bar d = backbone fractal dimension ), which even controls energy fluctuations (ω≃df≃dˉ\omega\simeq d_f\simeq\bar d). Numerical determinations of directed percolation exponents on diamond hierarchical lattice are also presented.Comment: 16 pages, 3 Postscript figure

    Pseudoknots in a Homopolymer

    Full text link
    After a discussion of the definition and number of pseudoknots, we reconsider the self-attracting homopolymer paying particular attention to the scaling of the number of pseudoknots at different temperature regimes in two and three dimensions. Although the total number of pseudoknots is extensive at all temperatures, we find that the number of pseudoknots forming between the two halves of the chain diverges logarithmically at (in both dimensions) and below (in 2d only) the theta-temparature. We later introduce a simple model that is sensitive to pseudoknot formation during collapse. The resulting phase diagram involves swollen, branched and collapsed homopolymer phases with transitions between each pair.Comment: submitted to PR

    Strong gravitational field light deflection in binary systems containing a collapsed star

    Full text link
    Large light deflection angles are produced in the strong gravitational field regions around neutron stars and black holes. In the case of binary systems, part of the photons emitted from the companion star towards the collapsed object are expected to be deflected in the direction of the earth. Based on a semi-classical approach we calculate the characteristic time delays and frequency shifts of these photons as a function of the binary orbital phase. The intensity of the strongly deflected light rays is reduced by many orders of magnitude, therefore making the observations of this phenomenon extremely difficult. Relativistic binary systems containing a radio pulsar and a collapsed object are the best available candidates for the detection of the strongly deflected photons. Based on the accurate knowledge of their orbital parameters, these systems allow to predict accurately the delays of the pulses along the highly deflected path, such that the sensitivity to very weak signals can be substantially improved through coherent summation over long time intervals. We discuss in detail the cases of PSR 1913+16 and PSR 1534+12 and find that the system geometry is far more promising for the latter. The observation of the highly deflected photons can provide a test of general relativity in an unprecedented strong field regime as well as a tight constraint on the radius of the collapsed object.Comment: 7 pages, uuencoded, gzip'ed, postscript file with figures included. Accepted for pubblication in MNRA

    Topological and geometrical entanglement in a model of circular DNA undergoing denaturation

    Full text link
    The linking number (topological entanglement) and the writhe (geometrical entanglement) of a model of circular double stranded DNA undergoing a thermal denaturation transition are investigated by Monte Carlo simulations. By allowing the linking number to fluctuate freely in equilibrium we see that the linking probability undergoes an abrupt variation (first-order) at the denaturation transition, and stays close to 1 in the whole native phase. The average linking number is almost zero in the denatured phase and grows as the square root of the chain length, N, in the native phase. The writhe of the two strands grows as the square root of N in both phases.Comment: 7 pages, 11 figures, revte

    The entropic cost to tie a knot

    Full text link
    We estimate by Monte Carlo simulations the configurational entropy of NN-steps polygons in the cubic lattice with fixed knot type. By collecting a rich statistics of configurations with very large values of NN we are able to analyse the asymptotic behaviour of the partition function of the problem for different knot types. Our results confirm that, in the large NN limit, each prime knot is localized in a small region of the polygon, regardless of the possible presence of other knots. Each prime knot component may slide along the unknotted region contributing to the overall configurational entropy with a term proportional to ln⁥N\ln N. Furthermore, we discover that the mere existence of a knot requires a well defined entropic cost that scales exponentially with its minimal length. In the case of polygons with composite knots it turns out that the partition function can be simply factorized in terms that depend only on prime components with an additional combinatorial factor that takes into account the statistical property that by interchanging two identical prime knot components in the polygon the corresponding set of overall configuration remains unaltered. Finally, the above results allow to conjecture a sequence of inequalities for the connective constants of polygons whose topology varies within a given family of composite knot types
    • 

    corecore