29,063 research outputs found

    Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory

    Full text link
    Ground state properties of proton-rich odd-ZZ nuclei in the region 55Z7355\le Z \le 73 are studied in the relativistic mean field (RMF) theory. The RMF equations are solved by using the expansion method in the Harmonic-Oscillator basis. In the particle-particle channel, we use the state-dependent BCS method with a zero-range δ\delta-force, which has been proved to be effective even for neutron-rich nuclei. All the ground state properties, including the one-proton separation energies, the ground state deformations, the last occupied proton orbits and the locations of proton drip line, are calculated. Good agreement with both the available experimental data and the predictions of the RHB method are obtained.Comment: the version to appear in Progress of Theoretical Physics, more discussions adde

    Masses, Deformations and Charge Radii--Nuclear Ground-State Properties in the Relativistic Mean Field Model

    Full text link
    We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with Z,N8Z,N\ge 8 and Z100Z\le 100 from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is needed to improve the current formulation of the relativistic mean field model.Comment: 16 pages, 5 figures, to appear in Progress of Theoretical Physic

    A systematic study of neutron magic nuclei with N = 8, 20, 28, 50, 82, and 126 in the relativistic mean field theory

    Full text link
    We perform a systematic study of all the traditional neutron magic nuclei with NN = 8, 20, 28, 50, 82, and 126, from the neutron drip line to the proton drip line. We adopt the deformed relativistic mean field (RMF) theory as our framework and treat pairing correlations by a simple BCS method with a zero-range δ\delta-force. Remarkable agreement with the available experimental data is obtained for the binding energies, the two- and one-proton separation energies, and the nuclear charge radii. The calculated nuclear deformations are compared with the available experimental data and the predictions of the FRDM mass formula and the HFBCS-1 mass formula. We discuss, in particular, the appearance of sub-shell magic nuclei by observing irregular behavior in the two- and one-proton separation energies.Comment: the version to appear in Journal of Physics G; more references adde

    A VLSI architecture of JPEG2000 encoder

    Get PDF
    Copyright @ 2004 IEEEThis paper proposes a VLSI architecture of JPEG2000 encoder, which functionally consists of two parts: discrete wavelet transform (DWT) and embedded block coding with optimized truncation (EBCOT). For DWT, a spatial combinative lifting algorithm (SCLA)-based scheme with both 5/3 reversible and 9/7 irreversible filters is adopted to reduce 50% and 42% multiplication computations, respectively, compared with the conventional lifting-based implementation (LBI). For EBCOT, a dynamic memory control (DMC) strategy of Tier-1 encoding is adopted to reduce 60% scale of the on-chip wavelet coefficient storage and a subband parallel-processing method is employed to speed up the EBCOT context formation (CF) process; an architecture of Tier-2 encoding is presented to reduce the scale of on-chip bitstream buffering from full-tile size down to three-code-block size and considerably eliminate the iterations of the rate-distortion (RD) truncation.This work was supported in part by the China National High Technologies Research Program (863) under Grant 2002AA1Z142

    The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers

    Full text link
    Using the self-consistent field approach, the effect of asymmetry of the coil block on the microphase separation is focused in ABC coil-rod-coil triblock copolymers. For different fractions of the rod block fBf_{\text B}, some stable structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell hexagonal lattice, and the phase diagrams are constructed. The calculated results show that the effect of the coil block fraction fAf_{\text A} is dependent on fBf_{\text B}. When fB=0.2f_{\text B}=0.2, the effect of asymmetry of the coil block is similar to that of the ABC flexible triblock copolymers; When fB=0.4f_{\text B}=0.4, the self-assembly of ABC coil-rod-coil triblock copolymers behaves like rod-coil diblock copolymers under some condition. When fBf_{\text B} continues to increase, the effect of asymmetry of the coil block reduces. For fB=0.4f_{\text B}=0.4, under the symmetrical and rather asymmetrical conditions, an increase in the interaction parameter between different components leads to different transitions between cylinders and lamellae. The results indicate some remarkable effect of the chain architecture on self-assembly, and can provide the guidance for the design and synthesis of copolymer materials.Comment: 9 pages, 3 figure

    Relativistic mean field theory for deformed nuclei with pairing correlations

    Full text link
    We develop a relativistic mean field (RMF) description of deformed nuclei with the pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei with the Fermi surface being close to the threshold of unbound states needs a special attention. To this end, we take the delta function interaction for the pairing interaction with the hope to pick up those states with the wave function being concentrated in the nuclear region and perform the standard BCS approximation for the single particle states generated by the RMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line.Comment: the version to be published in Progress of Theoretical Physic

    Non-degenerate colorings in the Brook's Theorem

    Full text link
    Let c2c\geq 2 and pcp\geq c be two integers. We will call a proper coloring of the graph GG a \textit{(c,p)(c,p)-nondegenerate}, if for any vertex of GG with degree at least pp there are at least cc vertices of different colors adjacent to it. In our work we prove the following result, which generalizes Brook's Theorem. Let D3D\geq 3 and GG be a graph without cliques on D+1D+1 vertices and the degree of any vertex in this graph is not greater than DD. Then for every integer c2c\geq 2 there is a proper (c,p)(c,p)-nondegenerate vertex DD-coloring of GG, where p=(c3+8c2+19c+6)(c+1).p=(c^3+8c^2+19c+6)(c+1). During the primary proof, some interesting corollaries are derived.Comment: 18 pages, 10 figure

    Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory

    Full text link
    We study the ground-state octet baryon masses and sigma terms using the covariant baryon chiral perturbation theory (ChPT) with the extended-on-mass-shell (EOMS) renormalization scheme up to next-to-next-to-next-to-leading order (N3^3LO). By adjusting the available 19 low-energy constants (LECs), a reasonable fit of the nf=2+1n_f=2+1 lattice quantum chromodynamics (LQCD) results from the PACS-CS, LHPC, HSC, QCDSF-UKQCD and NPLQCD collaborations is achieved. Finite-volume corrections to the lattice data are calculated self-consistently. Our study shows that N3^3LO BChPT describes better the light quark mass evolution of the lattice data than the NNLO BChPT does and the various lattice simulations seem to be consistent with each other. We also predict the pion and strangeness sigma terms of the octet baryons using the LECs determined in the fit of their masses. The predicted pion- and strangeness-nucleon sigma terms are σπN=43(1)(6)\sigma_{\pi N}=43(1)(6) MeV and σsN=126(24)(54)\sigma_{s N}=126(24)(54) MeV, respectively.Comment: 28 pages, 6 figures, minor revisions, typos corrected, version to appear in JHE
    corecore