77,654 research outputs found

    Short Gamma-Ray Bursts with Extended Emission Observed with Swift/BAT and Fermi/GBM

    Full text link
    Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the traditional classification based on the observed duration places some of them in the long GRB class. While GRBs with EE pose a challenge to the compact binary merger scenario, they may therefore provide an important link between short and long duration events. To identify the population of GRBs with EE regardless of their initial classifications, we performed a systematic search of short GRBs with EE using all available data (up to February 2013) of both Swift/BAT and Fermi/GBM. The search identified 16 BAT and 14 GBM detected GRBs with EE, several of which are common events observed with both detectors. We investigated their spectral and temporal properties for both the spikes and the EE, and examined correlations among these parameters. Here we present the results of the systematic search as well as the properties of the identified events. Finally, their properties are also compared with short GRBs with EE observed with BATSE, identified through our previous search effort. We found several strong correlations among parameters, especially when all of the samples were combined. Based on our results, a possible progenitor scenario of two-component jet is discussed.Comment: Published in MNRAS; matched to the published versio

    Parallel dynamics between non-Hermitian and Hermitian systems

    Full text link
    We study the connection between a family of non-Hermitian Hamiltonians H and Hermitian ones H based on exact solutions. In general, for a dynamic process in a non-Hermitian system H, there always exists a parallel dynamic process governed by the corresponding Hermitian conjugate Hamiltonian H{\dag}. We show that a linear superposition of the two parallel dynamics is exactly equivalent to the time evolution of a state under a Hermitian Hamiltonian H. It reveals a novel connection between non-Hermitian and Hermitian systems

    Pentaquark Magnetic Moments In Different Models

    Full text link
    We calculate the magnetic moments of the pentaquark states from different models and compare our results with predictions of other groups.Comment: 17 pages, no figur

    Image tag completion by local learning

    Full text link
    The problem of tag completion is to learn the missing tags of an image. In this paper, we propose to learn a tag scoring vector for each image by local linear learning. A local linear function is used in the neighborhood of each image to predict the tag scoring vectors of its neighboring images. We construct a unified objective function for the learning of both tag scoring vectors and local linear function parame- ters. In the objective, we impose the learned tag scoring vectors to be consistent with the known associations to the tags of each image, and also minimize the prediction error of each local linear function, while reducing the complexity of each local function. The objective function is optimized by an alternate optimization strategy and gradient descent methods in an iterative algorithm. We compare the proposed algorithm against different state-of-the-art tag completion methods, and the results show its advantages

    Magnetic Moments of JP=3/2+J^P={3/2}^+ Pentaquarks

    Full text link
    If the JPJ^P of Θ5+\Theta_5^+ and Ξ5\Xi_5^{--} pentaquarks is really found to be 12+{1\over 2}^+ by future experiments, they will be accompanied by JP=32+J^P={3\over 2}^+ partners in some models. It is reasonable to expect that these JP=32+J^P={3\over 2}^+ states will also be discovered in the near future with the current intensive experimental and theoretical efforts. We estimate JP=3/2+J^P={3/2}^+ pentaquark magnetic moments using different models.Comment: 13 page

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure
    corecore