2,363 research outputs found

    Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Get PDF
    This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR), that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit

    A Novel Dielectric Anomaly in Cuprates and Nickelates: Signature of an Electronic Glassy State

    Full text link
    The low-frequency dielectric response of hole-doped insulators La_{2}Cu_{1-x}Li_{x}O_{4} and La_{2-x}Sr_{x}NiO_{4} shows a large dielectric constant \epsilon ^{'} at high temperature and a step-like drop by a factor of 100 at a material-dependent low temperature T_{f}. T_{f} increases with frequency and the dielectric response shows universal scaling in a Cole-Cole plot, suggesting that a charge glass state is realized both in the cuprates and in the nickelates.Comment: 5 pages, 4 figure

    Suppression of Antiferromagnetic Order by Light Hole Doping in La_2Cu_{1-x}Li_xO_4: A ^{139}La NQR Study

    Full text link
    ^{139}La nuclear quadrupole resonance measurements in lightly doped La_2Cu_{1-x}Li_xO_4 have been performed to reveal the dependence of the magnetic properties of the antiferromagnetic CuO_2 planes on the character of the doped holes and their interactions with the dopant. A detailed study shows that the magnetic properties are remarkably insensitive to the character of the dopant impurity. This indicates that the added holes form previously unrecognized collective structures.Comment: 4 pages, 3 figures. Slightly modified version, as accepted for publication in Physical Review Letter

    COVID-19 Related Mobility Reduction: Heterogenous Effects on Sleep and Physical Activity Rhythms

    Full text link
    Mobility restrictions imposed to suppress coronavirus transmission can alter physical activity (PA) and sleep patterns. Characterization of response heterogeneity and their underlying reasons may assist in tailoring customized interventions. We obtained wearable data covering baseline, incremental movement restriction and lockdown periods from 1824 city-dwelling, working adults aged 21 to 40 years, incorporating 206,381 nights of sleep and 334,038 days of PA. Four distinct rest activity rhythms (RARs) were identified using k-means clustering of participants' temporally distributed step counts. Hierarchical clustering of the proportion of time spent in each of these RAR revealed 4 groups who expressed different mixtures of RAR profiles before and during the lockdown. Substantial but asymmetric delays in bedtime and waketime resulted in a 24 min increase in weekday sleep duration with no loss in sleep efficiency. Resting heart rate declined 2 bpm. PA dropped an average of 38%. 4 groups with different compositions of RAR profiles were found. Three were better able to maintain PA and weekday/weekend differentiation during lockdown. The least active group comprising 51 percent of the sample, were younger and predominantly singles. Habitually less active already, this group showed the greatest reduction in PA during lockdown with little weekday/weekend differences. Among different mobility restrictions, removal of habitual social cues by lockdown had the largest effect on PA and sleep. Sleep and resting heart rate unexpectedly improved. RAR evaluation uncovered heterogeneity of responses to lockdown and can identify characteristics of persons at risk of decline in health and wellbeing.Comment: 30 pages, 3 main figures, 3 tables, 4 supplementary figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tJt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Vibronic coupling and band gap trends in CuGeO3 nanorods

    Get PDF
    We measured the optical response of CuGeO3 nanorods in order to reveal size effects on the electronic properties. The vibronically activated d-to-d color band excitations are activated by the 131 and 478 cm−1 phonons, with the relative contribution of the lower frequency O-Cu-O bending mode increasing with decreasing size until it dominates the process. We also uncover trends in the direct band gap, with the charge transfer edge hardening with decreasing size. These findings advance the understanding of size effects in low-dimensional copper oxides
    corecore