1,721 research outputs found
Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates
Equilibrium vortex formation in rotating binary Bose gases with a rotating
frequency higher than the harmonic trapping frequency is investigated
theoretically. We consider the system being evaporatively cooled to form
condensates and a combined numerical scheme is applied to ensure the binary
system being in an authentic equilibrium state. To keep the system stable
against the large centrifugal force of ultrafast rotation, a quartic trapping
potential is added to the existing harmonic part. Using the Thomas-Fermi
approximation, a critical rotating frequency \Omega_c is derived, which
characterizes the structure with or without a central density hole. Vortex
structures are studied in detail with rotation frequency both above and below
?\Omega_c and with respect to the miscible, symmetrically separated, and
asymmetrically separated phases in their nonrotating ground-state counterparts.Comment: 7 pages, 7 figure
Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate
Based on a velocity formula derived by matched asymptotic expansion, we
investigate the dynamics of a circular vortex ring in an axisymmetric
Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an
axisymmetrically placed and oriented vortex ring is entirely determined,
revealing that the vortex ring generally precesses in condensate. The linear
instability due to bending waves is investigated both numerically and
analytically. General stability boundaries for various perturbed wavenumbers
are computed. In particular, the excitation spectrum and the absolutely stable
region for the static ring are analytically determined.Comment: 4 pages, 4 figure
Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate
Formation of stationary 3D wave patterns generated by a small point-like
impurity moving through a Bose-Einstein condensate with supersonic velocity is
studied. Asymptotic formulae for a stationary far-field density distribution
are obtained. Comparison with three-dimensional numerical simulations
demonstrates that these formulae are accurate enough already at distances from
the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure
Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29
GRB 050904 at redshift z=6.29, discovered and observed by Swift and with
spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst
to be identified from beyond the epoch of reionization. Since the progenitors
of long gamma-ray bursts have been identified as massive stars, this event
offers a unique opportunity to investigate star formation environments at this
epoch. Apart from its record redshift, the burst is remarkable in two respects:
first, it exhibits fast-evolving X-ray and optical flares that peak
simultaneously at t~470 s in the observer frame, and may thus originate in the
same emission region; and second, its afterglow exhibits an accelerated decay
in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst,
coincident with repeated and energetic X-ray flaring activity. We make a
complete analysis of available X-ray, NIR, and radio observations, utilizing
afterglow models that incorporate a range of physical effects not previously
considered for this or any other GRB afterglow, and quantifying our model
uncertainties in detail via Markov Chain Monte Carlo analysis. In the process,
we explore the possibility that the early optical and X-ray flare is due to
synchrotron and inverse Compton emission from the reverse shock regions of the
outflow. We suggest that the period of accelerated decay in the NIR may be due
to suppression of synchrotron radiation by inverse Compton interaction of X-ray
flare photons with electrons in the forward shock; a subsequent interval of
slow decay would then be due to a progressive decline in this suppression. The
range of acceptable models demonstrates that the kinetic energy and circumburst
density of GRB 050904 are well above the typical values found for low-redshift
GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor
modifications and 1 extra figur
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
Transcritical flow of a stratified fluid past a broad localised topographic
obstacle is studied analytically in the framework of the forced extended
Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible
signs for the cubic nonlinear term in the Gardner equation corresponding to
different fluid density stratification profiles. We identify the range of the
input parameters: the oncoming flow speed (the Froude number) and the
topographic amplitude, for which the obstacle supports a stationary localised
hydraulic transition from the subcritical flow upstream to the supercritical
flow downstream. Such a localised transcritical flow is resolved back into the
equilibrium flow state away from the obstacle with the aid of unsteady coherent
nonlinear wave structures propagating upstream and downstream. Along with the
regular, cnoidal undular bores occurring in the analogous problem for the
single-layer flow modeled by the forced KdV equation, the transcritical
internal wave flows support a diverse family of upstream and downstream wave
structures, including solibores, rarefaction waves, reversed and trigonometric
undular bores, which we describe using the recent development of the nonlinear
modulation theory for the (unforced) Gardner equation. The predictions of the
developed analytic construction are confirmed by direct numerical simulations
of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure
Ground state energy of the spinor Bose-Einstein condensates
We calculate, in the standard Bogoliubov approximation, the ground state
energy of the spinor BEC with hyperfine spin where the two-body repulsive
hard-core and spin exchange interactions are both included. The coupling
constants characterized these two competing interactions are expressed in terms
of the corresponding s-wave scattering lengths using second-order perturbation
methods. We show that the ultraviolet divergence arising in the ground state
energy corrections can be exactly eliminated.Comment: 14 pages, no figures, submitted to PR
Spontaneous Crystallization of Skyrmions and Fractional Vortices in the Fast-rotating and Rapidly-quenched Spin-1 Bose-Einstein Condensates
We investigate the spontaneous generation of crystallized topological defects
via the combining effects of fast rotation and rapid thermal quench on the
spin-1 Bose-Einstein condensates. By solving the stochastic projected
Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a
hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices
can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively,
which can be imaged by using the polarization-dependent phase-contrast method
Detectability of GRB Iron Lines by Swift, Chandra and XMM
The rapid acquisition of positions by the upcoming Swift satellite will allow
the monitoring for X-ray lines in GRB afterglows at much earlier epochs than
was previously feasible. We calculate the possible significance levels of iron
line detections as a function of source redshift and observing time after the
trigger, for the Swift XRT, Chandra ACIS and XMM Epic detectors. For bursts
with standard luminosities, decay rates and equivalent widths of 1 keV assumed
constant starting at early source-frame epochs, Swift may be able to detect
lines up to z~1.5 with a significance of better than 3 sigma for times up to
10^4 s. The same lines would be detectable with better than 4 sigma
significance at z up to 6 by Chandra, and up to 8 by XMM, for times of up to
10^5 s. For similar bursts with a variable equivalent width peaking at 1 keV
between 0.5 and 1 days in the source frame, Swift achieves the same
significance level for z~1 at t~1 day, while Chandra reaches the previous
detection significances around t~ 1-2 days for z~ 2-4, i.e. the line is
detectable near the peak equivalent width times, and undetectable at earlier or
later times. For afterglows in the upper range of initial X-ray luminosites
afterglows, which may also be typical of pop. III bursts, similar significance
levels are obtained out to substantially higher redshifts. A distinction
between broad and narrow lines to better than 3 sigma is possible with Chandra
and XMM out to z~2 and ~6.5, respectively, while Swift can do so up to z~1, for
standard burst parameters. A distinction between different energy centroid
lines of 6.4 keV vs. 6.7 KeV (or 6.7 keV vs. Cobalt 7.2 keV) is possible up to
z~0.6, 1.2, and 2 (z~ 1, 5, 7.5), with Swift,Chandra, and XMM respectively.Comment: Accepted for publication in ApJ; 20 pages, 7 figures, minor changes
to abstract and discussio
- …