393,235 research outputs found
Novel Compact and High Selectivity Dual-band BPF with Wide Stopband
A novel type of compact and high selectivity dual-band bandpass filter (BPF) incorporating a dual-mode defected ground structure resonator (DDGSR) and a dual-mode open-stub loaded stepped impedance resonator (DOLSIR) is proposed in this paper. Utilizing capacitive source-load coupling and the intrinsic characteristics of the two types of dual-mode resonators, compact dual-band BPF with multi transmission zeros near the passband edges as well as a wide stopband which can be used to achieve high selectivity is realized. An experimental dual-band BPF located at 2.4 and 3.2 GHz was designed and fabricated. The validity of the design approach is verified by good agreement between simulated and measurement results
Iterative Equalization and Source Decoding for Vector Quantized Sources
In this contribution an iterative (turbo) channel equalization and source decoding scheme is considered. In our investigations the source is modelled as a Gaussian-Markov source, which is compressed with the aid of vector quantization. The communications channel is modelled as a time-invariant channel contaminated by intersymbol interference (ISI). Since the ISI channel can be viewed as a rate-1 encoder and since the redundancy of the source cannot be perfectly removed by source encoding, a joint channel equalization and source decoding scheme may be employed for enhancing the achievable performance. In our study the channel equalization and the source decoding are operated iteratively on a bit-by-bit basis under the maximum aposteriori (MAP) criterion. The channel equalizer accepts the a priori information provided by the source decoding and also extracts extrinsic information, which in turn acts as a priori information for improving the source decoding performance. Simulation results are presented for characterizing the achievable performance of the iterative channel equalization and source decoding scheme. Our results show that iterative channel equalization and source decoding is capable of achieving an improved performance by efficiently exploiting the residual redundancy of the vector quantization assisted source coding
Optical spectroscopy study of the collapsed tetragonal phase of CaFe(AsP) single crystals
We present an optical spectroscopy study on P-doped CaFeAs which
experiences a structural phase transition from tetragonal to collapsed
tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of
low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4
eV) in optical conductivity across the transition, indicating an abrupt
reconstruction of band structure. The appearance of new feature is related to
the interband transition arising from the sinking of hole bands near
point below Fermi level in the cT phase, as expected from the density function
theory calculations in combination with the dynamical mean field theory.
However, the reduction of Drude spectral weight is at variance with those
calculations. The measurement also indicates an absence of the abnormal
spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase,
suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure
Optical study of phase transitions in single-crystalline RuP
RuP single crystals of MnP-type orthorhombic structure were synthesized by
the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal
that the compound experiences two structural phase transitions, which are
further confirmed by enormous anomalies shown in temperature-dependent
resistivity and magnetic susceptibility. Particularly, the resistivity drops
monotonically upon temperature cooling below the second transition, indicating
that the material shows metallic behavior, in sharp contrast with the
insulating ground state of polycrystalline samples. Optical conductivity
measurements were also performed in order to unravel the mechanism of these two
transitions. The measurement revealed a sudden reconstruction of band structure
over a broad energy scale and a significant removal of conducting carriers
below the first phase transition, while a charge-density-wave-like energy gap
opens below the second phase transition.Comment: 5 pages, 6 figure
Nonequilibrium transport and population inversion in double quantum dot systems
We present a microscopic theory for both equilibrium and nonequilibrium
transport properties of coupled double quantum dots (DQD). A general formula
for current tunneling through the DQD is derived by the nonequilibrium Green's
function method. Using a Hartree-Fock approach, effects of multi-level coupling
and nonequilibrium electron distributions in resonant tunneling are considered.
We find that the peak in the resonant tunneling current through two symmetric
dots will split only when the inter-dot coupling is stronger than dot-lead
coupling. We predict that population inversion can be achieved in one dot in
the nonequilibrium regime.Comment: 19 pages, RevTex. 3 Figures included, to be published in Int. J. Mod.
Phys.
Magnetization reversal through synchronization with a microwave
Based on the Landau-Lifshitz-Gilbert equation, it can be shown that a
circularly-polarized microwave can reverse the magnetization of a Stoner
particle through synchronization. In comparison with magnetization reversal
induced by a static magnetic field, it can be shown that when a proper
microwave frequency is used the minimal switching field is much smaller than
that of precessional magnetization reversal. A microwave needs only to overcome
the energy dissipation of a Stoner particle in order to reverse magnetization
unlike the conventional method with a static magnetic field where the switching
field must be of the order of magnetic anisotropy.Comment: 4 pages, 5 figure
- …
