4,682 research outputs found

    High Dimensional Apollonian Networks

    Get PDF
    We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension

    The development of ovary in quail’s embryo

    Get PDF
    The experiment was conducted to study the development of ovary in quails’ embryos which were incubated for 4 to 17 days and incubated out for 1 day. The quails’ embryos or gonads were cut out and HE staining was carried out. The results showed that when embryo was hatched for 4 days, lots of primordial germ cells (PGCs) clustered in the region where gonad would be formed. On the 5th day of hatching, the gonad of the embryo began to be formed and exhibited the feature of ovary or testis. On the 7th hatching day, the right ovary began to degenerate, just a few PGCs began to differentiate into oogonia. On the 10th day, there were many oogonia in the ovary, some of which were surrounded by some other cells distributed like circles. On the 11th day, there were more oogonia, the skinniness became thicker while the medulla was thinner. On the 13th day, the division between skinniness and medulla was obvious and the ovary formed the early original ovum. On the 14th day, more original ovums were seen in the skinniness. On the 17th hatching day and on the 1st day of hatching out, the shape of ovary tended to be mature, also the ovum was clear and more; the medulla was full of vessels. On the 5th hatching day, gonad began to differentiate. On the 7th hatching day and later, thedifferentiation of gonad was obvious; the right ovary began to degenerate. On the 13th hatching day, early original ovum began to be formed in the skinniness of ovary. The results established groundwork for the research of the development of gonads of quail and other poultry.Key words: Quail, embryo, gonad, ovary

    Dominant Physicochemical Properties of SF6/N2 Thermal Plasmas with a Two-temperature Chemical Kinetic Model

    Get PDF
    It's increasingly clear that the existence of thermodynamic equilibrium is an exception rather than the role in SF6/N2 thermal plasmas. We intended to investigate the dominant physicochemical properties of SF6/N2 thermal plasmas at 4  atm from 12000 K to 1000 K with considering the thermal non-equilibrium. A two-temperature chemical kinetic model containing all the available reactions is developed. The temperature difference between the electron and the heavy species is defined as a function of the electron number density. The molar fractions of species are compared to the equilibrium composition predicted by Gibbs free energy minimization. By analyzing the main reactions in the generation and loss of a dominant species, the chemistry set is simplified and characterized by a few species and reactions. Then, the dominant physicochemical properties are captured and the computing time of complicated chemical kinetic model is dramatically shortened at the same time

    Hawking radiation of Dirac particles via tunneling from Kerr black hole

    Full text link
    We investigated Dirac Particles' Hawking radiation from event horizon of Kerr black hole in terms of the tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in Kerr spacetime background, we obtain the tunneling probability for fermions and Hawking temperature of Kerr black hole. The result obtained by taking the fermion tunneling into account is consistent with the previous literatures.Comment: 7 pages, no figures, to appear in CQ

    Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions

    Full text link
    Competition of crystal field splitting and Hund's rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb correlation, the system firstly transits from a paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott insulator, or a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund's rule coupling. The different AFM Mott insulator, PM metal and orbital insulating phase are none, partially and fully orbital polarized, respectively. For a small JHJ_{H} and a finite crystal field, the orbital insulator is robust. Although the system is nonmagnetic, the phase boundary of the orbital insulator transition obviously shifts to the small UU regime after the magnetic correlations is taken into account. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund's rule coupling tends to destroy it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure

    Additive noise properties of active matrix flatâ panel imagers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134764/1/mp6721.pd

    Dielectric nonlinearity of relaxor ferroelectric ceramics at low ac drives

    Full text link
    Dielectric nonlinear response of (PbMg1/3_{1/3}Nb2/3_{2/3}O3_3)0.9_{0.9}(PbTiO3_3)0.1_{0.1} (0.9PMN-0.1PT) relaxor ceramics was investigated under different ac drive voltages. It was observed that: (i) the dielectric permittivity is independent on ac field amplitude at high temperatures; (ii) with increasing ac drive, the permittivity maximum increases, and the temperature of the maximum shifts to lower temperature; (iii) the nonlinear effect is weakened when the measurement frequency increases. The influences of increasing ac drive were found to be similar to that of decreasing frequency. It is believed that the dielectric nonlinearities of relaxors at low drives can be explained by the phase transition theory of ergodic space shrinking in succession. A Monte Carlo simulation was performed on the flips of micro polarizations at low ac drives to verify the theory.Comment: Submitted to J. Phys.: Cond. Matte

    Effects of ac-field amplitude on the dielectric susceptibility of relaxors

    Full text link
    The thermally activated flips of the local spontaneous polarization in relaxors were simulated to investigate the effects of the applied-ac-field amplitude on the dielectric susceptibility. It was observed that the susceptibility increases with increasing the amplitude at low temperatures. At high temperatures, the susceptibility experiences a plateau and then drops. The maximum in the temperature dependence of susceptibility shifts to lower temperatures when the amplitude increases. A similarity was found between the effects of the amplitude and frequency on the susceptibility.Comment: 8 pages, 7 figures, Phys. Rev. B (in July 1st
    corecore