2,354 research outputs found

    Inertial range scaling in numerical turbulence with hyperviscosity

    Full text link
    Numerical turbulence with hyperviscosity is studied and compared with direct simulations using ordinary viscosity and data from wind tunnel experiments. It is shown that the inertial range scaling is similar in all three cases. Furthermore, the bottleneck effect is approximately equally broad (about one order of magnitude) in these cases and only its height is increased in the hyperviscous case--presumably as a consequence of the steeper decent of the spectrum in the hyperviscous subrange. The mean normalized dissipation rate is found to be in agreement with both wind tunnel experiments and direct simulations. The structure function exponents agree with the She-Leveque model. Decaying turbulence with hyperviscosity still gives the usual t^{-1.25} decay law for the kinetic energy, and also the bottleneck effect is still present and about equally strong.Comment: Final version (7 pages

    Magnetic field generation in fully convective rotating spheres

    Full text link
    Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere by the global scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal angular velocity shows some tendency to be constant along cylinders and is ``anti-solar'' (fastest at the poles and slowest at the equator).Comment: 12 pages, 11 figures, 2 tables, to appear in the 10 Feb issue of Ap

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Solar dynamo model with nonlocal alpha-effect

    Full text link
    The first results of the solar dynamo model that allows for the diamagnetic effect of inhomogeneous turbulence and the nonlocal alpha-effect due to the rise of magnetic loops are discussed. The nonlocal alpha-effect is not subject to the catastrophic quenching related to the conservation of magnetic helicity. Given the diamagnetic pumping, the magnetic fields are concentrated near the base of the convection zone, although the distributed-type model covers the entire thickness of the convection zone. The magnetic cycle period, the equatorial symmetry of the field, its meridional drift, and the polar-to-toroidal field ratio obtained in the model are in agreement with observations. There is also some disagreement with observations pointing the ways of improving the model.Comment: To appear in Astronomy Letters, 10 pages, 5 figure

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Effects of Compost Manure on Soil Microbial Respiration, Plant-Available-Water, Peanut (Arachis hypogaea L.) Yield and Pre-Harvest Aflatoxin Contamination

    Get PDF
    Peanut production in Zambia is often characterized by low yields and high aflatoxin incidence in harvested kernels. Soil amendments such as farmyard manure have shown potential to increase yields and reduce pre-harvest aflatoxin incidence. The aim of the current study was to evaluate the effects of composted cattle manure on soil properties that relate to yield and pre-harvest aflatoxin contamination of peanut kernels. Research evaluated the effects of composted cattle manure on soil respiration, plant-available water (PAW), peanut yield and pre-harvest aflatoxin contamination in a field experiment conducted in two successive rain-fed cropping seasons starting in December, 2015 and ending in April 2017, in Chongwe District, Zambia. Six (6) levels of compost were incorporated into the top 10 cm of the soil at rates of 0, 4.5, 12.0, 19.5, 27.0, and 34.5 metric tons/ha 1 wk before planting. There was a strong positive relationship between levels of compost and soil microbial respiration (R2=0.84) and PAW (R2=0.86). Secondly, compost manure was associated with increases in pod (R2=0.65) and kernel (R2=0.61) yield. The kernel yield potential of the planted cultivar was achieved at the rate of 12 metric tons per ha. Thirdly, there was a reduction in total aflatoxin levels with increasing levels of compost (R2=0.85). The improvement in peanut yield and the decrease in aflatoxin concentrations in kernels can be attributed to the improvement in soil moisture retention capacity and soil microbial activity arising from manure amendments. This study demonstrated the potential of compost manure to increase soil microbial activity, PAW, peanut yield and minimize aflatoxin contamination at field level

    Top Production in Hadron-Hadron Collisions and Anomalous Top-Gluon Couplings

    Get PDF
    We discuss the influence of anomalous tbar-t-G couplings on total and differential tbar-t production cross sections in hadron-hadron collisions. We study in detail the effects of a chromoelectric and a chromomagnetic dipole moment, d' and \mu', of the top quark. In the d'-\mu' plane, we find a whole region where the anomalous couplings give a zero net contribution to the total top production rate. In differential cross sections, the anomalous moments have to be quite sizable to give measurable effects. We estimate the values of d' and \mu' which are allowed by the present Tevatron experimental results on top production. A chromoelectric dipole moment of the top violates CP invariance. We discuss a simple CP-odd observable which allows for a direct search for CP violation in top production.Comment: footnote pg. 4 changed, acknowledgments extende

    Astrophysical turbulence modeling

    Full text link
    The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic

    Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    Full text link
    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.Comment: 16 pages, 7 figures; v2: references added, minor clarifying additions, matches published versio

    In--out intermittency in PDE and ODE models

    Get PDF
    We find concrete evidence for a recently discovered form of intermittency, referred to as in--out intermittency, in both PDE and ODE models of mean field dynamos. This type of intermittency (introduced in Ashwin et al 1999) occurs in systems with invariant submanifolds and, as opposed to on--off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behaviour may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in--out intermittency are axisymmetric mean--field dynamo models which are often used to study the observed large scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities.Comment: To be published in Chaos, June 2001, also available at http://www.eurico.web.co
    • …
    corecore