84,966 research outputs found

    Dynamical critical exponent of the Jaynes-Cummings-Hubbard model

    Full text link
    An array of high-Q electromagnetic resonators coupled to qubits gives rise to the Jaynes-Cummings-Hubbard model describing a superfluid to Mott insulator transition of lattice polaritons. From mean-field and strong coupling expansions, the critical properties of the model are expected to be identical to the scalar Bose-Hubbard model. A recent Monte Carlo study of the superfluid density on the square lattice suggested that this does not hold for the fixed-density transition through the Mott lobe tip. Instead, mean-field behavior with a dynamical critical exponent z=2 was found. We perform large-scale quantum Monte Carlo simulations to investigate the critical behavior of the superfluid density and the compressibility. We find z=1 at the tip of the insulating lobe. Hence the transition falls in the 3D XY universality class, analogous to the Bose-Hubbard model.Comment: 4 pages, 4 figures. To appear as a Rapid Communication in Phys. Rev.

    Cluster: A fleet of four spacecraft to study plasma structures in three dimensions

    Get PDF
    The four Cluster spacecraft are spin stabilized spacecraft which are designed and built under stringent requirements as far as electromagnetic cleanliness is concerned. Conductive surfaces and low electromagnetic background noise are mandatory for accurate electric field and cold plasma measurements. The mission is implemented in collaboration between ESA and NASA. A Russian mission will be closely coordinated with Cluster

    On Superalgebras of Matrices with Symmetry Properties

    Get PDF
    It is known that semi-magic square matrices form a 2-graded algebra or superalgebra with the even and odd subspaces under centre-point reflection symmetry as the two components. We show that other symmetries which have been studied for square matrices give rise to similar superalgebra structures, pointing to novel symmetry types in their complementary parts. In particular, this provides a unifying framework for the composite `most perfect square' symmetry and the related class of `reversible squares'; moreover, the semi-magic square algebra is identified as part of a 2-gradation of the general square matrix algebra. We derive explicit representation formulae for matrices of all symmetry types considered, which can be used to construct all such matrices.Comment: 25 page

    Correctness of an STM Haskell implementation

    Get PDF
    A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics
    corecore