65,957 research outputs found

    Hermitian scattering behavior for the non-Hermitian scattering center

    Full text link
    We study the scattering problem for the non-Hermitian scattering center, which consists of two Hermitian clusters with anti-Hermitian couplings between them. Counterintuitively, it is shown that it acts as a Hermitian scattering center, satisfying r2+t2=1|r| ^{2}+|t| ^{2}=1, i.e., the Dirac probability current is conserved, when one of two clusters is embedded in the waveguides. This conclusion can be applied to an arbitrary parity-symmetric real Hermitian graph with additional PT-symmetric potentials, which is more feasible in experiment. Exactly solvable model is presented to illustrate the theory. Bethe ansatz solution indicates that the transmission spectrum of such a cluster displays peculiar feature arising from the non-Hermiticity of the scattering center.Comment: 6 pages, 2 figure

    Generalized-Ensemble Simulations of the Human Parathyroid Hormone Fragment PTH(1-34)

    Full text link
    A generalized-ensemble technique, multicanonical sampling, is used to study the folding of a 34-residue human parathyroid hormone fragment. An all-atom model of the peptide is employed and the protein-solvent interactions are approximated by an implicit solvent. Our results demonstrate that generalized-ensemble simulations are well suited to sample low-energy structures of such large polypeptides. Configurations with a root-mean-square deviation (rmsd) to the crystal structure of less than one \AA are found. Finally, we discuss limitations of our implicit solvent model.Comment: To appear in J. Chem. Phy

    Environmental boundary tracking and estimation using multiple autonomous vehicles

    Get PDF
    In this paper, we develop a framework for environmental boundary tracking and estimation by considering the boundary as a hidden Markov model (HMM) with separated observations collected from multiple sensing vehicles. For each vehicle, a tracking algorithm is developed based on Page’s cumulative sum algorithm (CUSUM), a method for change-point detection, so that individual vehicles can autonomously track the boundary in a density field with measurement noise. Based on the data collected from sensing vehicles and prior knowledge of the dynamic model of boundary evolvement, we estimate the boundary by solving an optimization problem, in which prediction and current observation are considered in the cost function. Examples and simulation results are presented to verify the efficiency of this approach

    Resonance enhanced turbulent transport

    Get PDF
    The effect of oscillatory shear flows on turbulent transport of passive scalar fields is studied by numerical computations based on the results provided by E. Kim [Physics of Plasmas 13, 022308 (2006)] . Turbulent diffusion is found to depend crucially on the competition between suppression due to shearing and enhancement due to resonances, depending on the characteristic time and length scales of shear flow and turbulence. Enhancements in transport occur for turbulence with finite memory time either due to Doppler or parametric resonances. Scalings of turbulence amplitude and transport are provided in different parameter spaces. The results suggest that oscillatory shear flows are not only less efficient in regulating turbulence, but also can enhance the value of turbulent diffusion, accelerating turbulent transport
    corecore