89,004 research outputs found

    A 3-dimensional numerical simulation of the atmospheric injection of aerosols by a hypothetical basaltic fissure eruption

    Get PDF
    Researchers simulated the atmospheric response to a hypothetical basaltic fissure eruption using heating rates based on the Roza flow eruption. The simulation employs the Colorado State University Regional Atmospheric Model (RAMS) with scavenging effects. The numerical model is a three-dimensional non-hydrostatic time-split compressible cloud/mesoscale model. Explicit microphysics include prediction of cloud, rain, crystal, and hail precipitation types. Nucleation and phoretic scavenging are predicted assuming that the pollutant makes an effective cloud droplet nucleus. Smoke is carried as a passive tracer. Long and short wave radiation heating tendencies, including the effects of the smoke, are parameterized. The longwave emission by the lava surface is neglected in the parameterization and included as an explicit heating term instead. A regional scale domain of 100 x 100 km in the horizontal and 22 km high is used. The horizontal grid spacing is taken to be 2 km and the vertical spacing is taken to be 0.75 km. The initial atmospheric state is taken to be horizontally homogenous and based on the standard atmospheric sounding. The fissure is assumed to be 90 km long and oriented in a zig/zag pattern

    Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    Get PDF
    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America

    A computer analysis program for interfacing thermal and structural codes

    Get PDF
    A software package has been developed to transfer three-dimensional transient thermal information accurately, efficiently, and automatically from a heat transfer analysis code to a structural analysis code. The code is called three-dimensional TRansfer ANalysis Code to Interface Thermal and Structural codes, or 3D TRANCITS. TRANCITS has the capability to couple finite difference and finite element heat transfer analysis codes to linear and nonlinear finite element structural analysis codes. TRANCITS currently supports the output of SINDA and MARC heat transfer codes directly. It will also format the thermal data output directly so that it is compatible with the input requirements of the NASTRAN and MARC structural analysis codes. Other thermal and structural codes can be interfaced using the transfer module with the neutral heat transfer input file and the neutral temperature output file. The transfer module can handle different elemental mesh densities for the heat transfer analysis and the structural analysis

    Marangoni bubble motion in zero gravity

    Get PDF
    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully

    An interactive method for digitizing zone maps

    Get PDF
    A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given

    Tiros VII infrared radiation coverage of the 1963 Atlantic hurricane season with supporting television and conventional meteorological data

    Get PDF
    Infrared radiation data analyzed from Tiros VII SATELLITE coverage of North Atlantic hurricanes during 196

    Introduction of Parasites of the Larch Sawfly in Minnesota

    Get PDF
    Olesicampe benefactor Hinz and the Bavarian strain of Mesoleius tenthredinis Morley, European ichneunionid parasites of the larch sawfly, Pristiphora erichsonii (Hartig), were introduced into northern Minnesota from Manitoba in 1971 and 1972. Both species are now established. There was also natural spread of 0. benefactor into Minnesota from Manitoba releases in 1961 at a point ca. 200 miles northwest of the Minnesota plots

    Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G

    Get PDF
    New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format
    corecore