10,583 research outputs found
Packing defects and the width of biopolymer bundles
The formation of bundles composed of actin filaments and cross-linking
proteins is an essential process in the maintenance of the cells' cytoskeleton.
It has also been recreated by in-vitro experiments, where actin networks are
routinely produced to mimic and study the cellular structures. It has long been
observed that these bundles seem to have a well defined width distribution,
which has not been adequately described theoretically. We propose here that
packing defects of the filaments, quenched and random, contribute an effective
repulsion that counters the cross-linking adhesion energy and leads to a well
defined bundle width. This is a two-dimensional strain-field version of the
classic Rayleigh instability of charged droplets
Suppressing the Rayleigh-Taylor instability with a rotating magnetic field
The Rayleigh-Taylor instability of a magnetic fluid superimposed on a
non-magnetic liquid of lower density may be suppressed with the help of a
spatially homogeneous magnetic field rotating in the plane of the undisturbed
interface. Starting from the complete set of Navier-Stokes equations for both
liquids a Floquet analysis is performed which consistently takes into account
the viscosities of the fluids. Using experimentally relevant values of the
parameters we suggest to use this stabilization mechanism to provide controlled
initial conditions for an experimental investigation of the Rayleigh-Taylor
instability
Diffusion and Transport Coefficients in Synthetic Opals
Opals are structures composed of the closed packing of spheres in the size
range of nano-to-micro meter. They are sintered to create small necks at the
points of contact. We have solved the diffusion problem in such structures. The
relation between the diffusion coefficient and the termal and electrical
conductivity makes possible to estimate the transport coefficients of opal
structures. We estimate this changes as function of the neck size and the
mean-free path of the carriers. The theory presented is also applicable to the
diffusion problem in other periodic structures.Comment: Submitted to PR
The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface
We find that a liquid jet can bounce off a bath of the same liquid if the
bath is moving horizontally with respect to the jet. Previous observations of
jets rebounding off a bath (e.g. Kaye effect) have been reported only for
non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian
fluids, including mineral oil poured by hand. A thin layer of air separates the
bouncing jet from the bath, and the relative motion replenishes the film of
air. Jets with one or two bounces are stable for a range of viscosity, jet flow
rate and velocity, and bath velocity. The bouncing phenomenon exhibits
hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review
Electric field inside a "Rossky cavity" in uniformly polarized water
Electric field produced inside a solute by a uniformly polarized liquid is
strongly affected by dipolar polarization of the liquid at the interface. We
show, by numerical simulations, that the electric "cavity" field inside a
hydrated non-polar solute does not follow the predictions of standard Maxwell's
electrostatics of dielectrics. Instead, the field inside the solute tends, with
increasing solute size, to the limit predicted by the Lorentz virtual cavity.
The standard paradigm fails because of its reliance on the surface charge
density at the dielectric interface determined by the boundary conditions of
the Maxwell dielectric. The interface of a polar liquid instead carries a
preferential in-plane orientation of the surface dipoles thus producing
virtually no surface charge. The resulting boundary conditions for
electrostatic problems differ from the traditional recipes, affecting the
microscopic and macroscopic fields based on them. We show that relatively small
differences in cavity fields propagate into significant differences in the
dielectric constant of an ideal mixture. The slope of the dielectric increment
of the mixture versus the solute concentration depends strongly on which
polarization scenario at the interface is realized. A much steeper slope found
in the case of Lorentz polarization also implies a higher free energy penalty
for polarizing such mixtures.Comment: 9 pages, 8 figure
Stretching Instability of Helical Spring
We show that when a gradually increasing tensile force is applied to the ends
of a helical spring with sufficiently large ratios of radius to pitch and twist
to bending rigidity, the end-to-end distance undergoes a sequence of
discontinuous stretching transitions. Subsequent decrease of the force leads to
step-like contraction and hysteresis is observed. For finite helices, the
number of these transitions increases with the number of helical turns but only
one stretching and one contraction instability survive in the limit of an
infinite helix. We calculate the critical line that separates the region of
parameters in which the deformation is continuous from that in which stretching
instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure
Spitzer Quasar and ULIRG evolution study (QUEST): I. The origin of the far infrared continuum of QSOs
This paper addresses the origin of the far-infrared (FIR) continuum of QSOs,
based on the Quasar and ULIRG Evolution Study (QUEST) of nearby QSOs and ULIRGs
using observations with the Spitzer Space Telescope. For 27 Palomar-Green QSOs
at z <~ 0.3, we derive luminosities of diagnostic lines ([NeII]12.8um,
[NeV]14.3um, [OIV]25.9um) and emission features (PAH7.7um emission which is
related to star formation), as well as continuum luminosities over a range of
mid- to far-infrared wavelengths between 6 and 60um. We detect star-formation
related PAH emission in 11/26 QSOs and fine-structure line emission in all of
them, often in multiple lines. The detection of PAHs in the average spectrum of
sources which lack individual PAH detections provides further evidence for the
widespread presence of PAHs in QSOs. Similar PAH/FIR and [NeII]/FIR ratios are
found in QSOs and in starburst-dominated ULIRGs and lower luminosity
starbursts. We conclude that the typical QSO in our sample has at least 30% but
likely most of the far-infrared luminosity (~ 10^(10...12)Lsun) arising from
star formation, with a tendency for larger star formation contribution at the
largest FIR luminosities. In the QSO sample, we find correlations between most
of the quantities studied including combinations of AGN tracers and starburst
tracers. The common scaling of AGN and starburst luminosities (and fluxes) is
evidence for a starburst-AGN connection in luminous AGN. Strong correlations of
far-infrared continuum and starburst related quantities (PAH, low excitation
[NeII]) offer additional support for the starburst origin of far-infrared
emission.Comment: 39 pages, 8 figures, accepted for publication in Ap
- …
