3,013 research outputs found

    Correlated random fields in dielectric and spin glasses

    Full text link
    Both orientational glasses and dipolar glasses possess an intrinsic random field, coming from the volume difference between impurity and host ions. We show this suppresses the glass transition, causing instead a crossover to the low TT phase. Moreover the random field is correlated with the inter-impurity interactions, and has a broad distribution. This leads to a peculiar variant of the Imry-Ma mechanism, with 'domains' of impurities oriented by a few frozen pairs. These domains are small: predictions of domain size are given for specific systems, and their possible experimental verification is outlined. In magnetic glasses in zero field the glass transition survives, because the random fields are disallowed by time-reversal symmetry; applying a magnetic field then generates random fields, and suppresses the spin glass transition.Comment: minor modifications, final versio

    A calibration of the stellar mass fundamental plane at z ~ 0.5 using the micro-lensing induced flux ratio anomalies of macro-lensed quasars

    Full text link
    We measure the stellar mass surface densities of early type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single epoch X-ray snapshots of ten quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter IMF with a low mass cutoff of 0.1 solar mass and treat the zeropoint of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77 < F < 2.10Comment: Revised in response to referee's suggestions and re-submitted to ApJ; changes to the adopted effective radii propagate to a new value of the factor F (by which Salpeter stellar masses must be multiplied) of 1.2

    Charged Lepton Electric Dipole Moments from TeV Scale Right-handed Neutrinos

    Full text link
    We study the connection between charged lepton electric dipole moments, dld_l (l=e,μ,τ)(l=e,\mu,\tau), and seesaw neutrino mass generation in a simple two Higgs doublet extension of the Standard Model plus three right-handed neutrinos (RHN) NaN_a, a=1,2,3a=1,2,3. For RHN with hierarchical masses and at least one with mass in the 10 TeV range we obtain the upper bounds of de<9×1030|d_e|< 9\times 10^{-30} e-cm and dμ<2×1026|d_{\mu}|<2 \times 10^{-26} e-cm. Our scenario favors the normal mass hierarchy for the light neutrinos. We also calculated the cross section for e^-e^- \ra W^- W^- in a high luminosity collider with constraints from neutrinoless double beta decay of nuclei included. Among the rare muon decay experiments we find that \mu\ra e\gamma is most sensitive and the upper limit is <8×1013<8\times 10^{-13}.Comment: references added, typos correcte

    The Luminosity Function of Galaxies in the Las Campanas Redshift Survey

    Get PDF
    We present the RR-band luminosity function for a sample of 18678 galaxies, with average redshift z=0.1z = 0.1, from the Las Campanas Redshift Survey. The luminosity function may be fit by a Schechter function with M=20.29±0.02+5loghM^* = -20.29 \pm 0.02 + 5 \log h, α=0.70±0.05\alpha = -0.70 \pm 0.05, and $\phi^* = 0.019 \pm 0.001 \ h^3 Mpc~Mpc^{-3},forabsolutemagnitudes, for absolute magnitudes -23.0 \leq M - 5 \log h \leq -17.5.Wecompareourluminosityfunctiontothatfromotherredshiftsurveys;inparticularournormalizationisconsistentwiththatoftheStromloAPMsurvey,andisthereforeafactoroftwobelowthatimpliedbythe. We compare our luminosity function to that from other redshift surveys; in particular our normalization is consistent with that of the Stromlo-APM survey, and is therefore a factor of two below that implied by the b_J \approx 20brightgalaxycounts.Ournormalizationthusindicatesthatmuchmoreevolutionisneededtomatchthefaintgalaxycountdata,comparedtominimalevolutionmodelswhichnormalizeat bright galaxy counts. Our normalization thus indicates that much more evolution is needed to match the faint galaxy count data, compared to minimal evolution models which normalize at b_J \approx 20.Also,weshowthatourfaintendslope. Also, we show that our faint-end slope \alpha = -0.7,thoughshallowerthantypicalpreviousvalues, though ``shallower'' than typical previous values \alpha = -1,resultsprimarilyfromfittingthedetailedshapeoftheLCRSluminosityfunction,ratherthanfromanyabsenceofintrinsicallyfaintgalaxiesfromoursurvey.Finally,using[OII]3727equivalentwidth, results primarily from fitting the detailed shape of the LCRS luminosity function, rather than from any absence of intrinsically faint galaxies from our survey. Finally, using [OII] 3727 equivalent width W_{\lambda} = 5 A˚ asthedividingline,wefindsignificantdifferencesintheluminosityfunctionsofemissionandnonemissiongalaxies,particularlyintheir~\AA \ as the dividing line, we find significant differences in the luminosity functions of emission and non-emission galaxies, particularly in their \alphavalues.EmissiongalaxieshaveSchechterparameters values. Emission galaxies have Schechter parameters M^* = -20.03 \pm 0.03 + 5 \log hand and \alpha = -0.9 \pm 0.1,whilenonemissiongalaxiesaredescribedby, while non-emission galaxies are described by M^* = -20.22 \pm 0.02 + 5 \log hand and \alpha = -0.3 \pm 0.1$. (abridged abstract)Comment: 41 pages, including 13 postscript figures, uses AASTEX v4.0 style files. Important clarification of R-band definition, plus correction of luminosity densities and updated references. Main conclusions unchanged. Final version to appear in Ap
    corecore