Both orientational glasses and dipolar glasses possess an intrinsic random
field, coming from the volume difference between impurity and host ions. We
show this suppresses the glass transition, causing instead a crossover to the
low T phase. Moreover the random field is correlated with the inter-impurity
interactions, and has a broad distribution. This leads to a peculiar variant of
the Imry-Ma mechanism, with 'domains' of impurities oriented by a few frozen
pairs. These domains are small: predictions of domain size are given for
specific systems, and their possible experimental verification is outlined. In
magnetic glasses in zero field the glass transition survives, because the
random fields are disallowed by time-reversal symmetry; applying a magnetic
field then generates random fields, and suppresses the spin glass transition.Comment: minor modifications, final versio