1,813 research outputs found

    On the weights of binary irreducible cyclic codes

    No full text
    International audienceThis paper is devoted to the study of the weights of binary irreducible cyclic codes. We start from McEliece's interpretation of these weights by means of Gauss sums. Firstly, a dyadic analysis, using the Stickelberger congruences and the Gross-Koblitz formula, enables us to improve McEliece's divisibility theorem by giving results on the multiplicity of the weights. Secondly, in connection with a Schmidt and White's conjecture, we focus on binary irreducible cyclic codes of index two. We show, assuming the generalized Riemann hypothesis, that there are an infinite of such codes. Furthermore, we consider a subclass of this family of codes satisfying the quadratic residue conditions. The parameters of these codes are related to the class number of some imaginary quadratic number fields. We prove the non existence of such codes which provide us a very elementary proof, without assuming G.R.H, that any two-weight binary irreducible cyclic code c(m,v) of index two with v prime greater that three is semiprimitive

    Intercultural Orientations as Japanese Language Learners' Motivation in Mainland China

    Get PDF
    postprin

    Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit.</p> <p>Methods</p> <p>The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system.</p> <p>Results</p> <p>Data will be summarized using descriptive summary measures, including proportions for categorical variables and means for continuous variables. Univariable and multivariable logistic regression models will be used to investigate associations between outcomes of interest and study specific covariates. When reporting results from individual studies, we will cite the measures of association and p-values reported in the studies. If appropriate for groups of studies with similar features, we will conduct meta-analyses.</p> <p>Conclusion</p> <p>A decision-maker-researcher partnership provides a model for systematic reviews that may foster knowledge translation and uptake.</p

    Twin Paradox and the logical foundation of relativity theory

    Full text link
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization SpecRel of special relativity from the literature. SpecRel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove usual relativistic properties of accelerated motion (e.g., clocks in acceleration) in SpecRel. As it turns out, this is practically equivalent to asking whether SpecRel is strong enough to "handle" (or treat) accelerated observers. We show that there is a mathematical principle called induction (IND) coming from real analysis which needs to be added to SpecRel in order to handle situations involving relativistic acceleration. We present an extended version AccRel of SpecRel which is strong enough to handle accelerated motion, in particular, accelerated observers. Among others, we show that the Twin Paradox becomes provable in AccRel, but it is not provable without IND.Comment: 24 pages, 6 figure

    Experimental and numerical study on soot formation in laminar diffusion flames of biodiesels and methyl esters

    Get PDF
    Biodiesel and blends with petroleum diesel are promising renewable alternative fuels for engines. In the present study, the soot concentration generated from four biodiesels, two pure methyl esters, and their blends with petroleum diesel are measured in a series of fully pre-vapourised co-flow diffusion flames. The experimental measurements are conducted using planar laser induced-incandescence (LII) and laser extinction optical methods. The results show that the maximum local soot volume fractions of neat biodiesels are 24.4% - 41.2% of pure diesel, whereas the mean soot volume fraction of neat biodiesel cases was measured as 11.3% - 21.3% of pure diesel. The addition of biodiesel to diesel not only reduces the number of inception particles, but also inhibits their surface growth. The discretised population balance modelling of a complete set of soot processes is employed to compute the 2D soot volume fraction and size distribution across the tested flames. The results show that the model also demonstrates a reduction of both soot volume fraction and primary particle size by adding biodiesel fuels. However, it is not possible to clearly determine which factors are responsible for the reduction from the comparison alone. Moreover, analysis of the discrepancies between numerical and experimental results for diesel and low-blending cases offers an insight for the refinement of soot formation modelling of combustion with large-molecule fuels.Bo Tian is supported by the fellowship provided by ZEPI. C. T. Chong is supported by the Newton Advanced Fellowship of the Royal Society (NA160115). Anxiong Liu gratefully acknowledges the financial support of the Chinese Scholarship Council (CSC) and the EPSRC grant No. EP/S012559/1

    Predicting clinical outcomes in Glioblastoma: an application of topological and functional data analysis

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive form of human brain cancer that is under active study in the field of cancer biology. Its rapid progression and the relative time cost of obtaining molecular data make other readily available forms of data, such as images, an important resource for actionable measures in patients. Our goal is to use information given by medical images taken from GBM patients in statistical settings. To do this, we design a novel statistic—the smooth Euler characteristic transform (SECT)—that quantifies magnetic resonance images of tumors. Due to its well-defined inner product structure, the SECT can be used in a wider range of functional and nonparametric modeling approaches than other previously proposed topological summary statistics. When applied to a cohort of GBM patients, we find that the SECT is a better predictor of clinical outcomes than both existing tumor shape quantifications and common molecular assays. Specifically, we demonstrate that SECT features alone explain more of the variance in GBM patient survival than gene expression, volumetric features, and morphometric features. The main takeaways from our findings are thus 2-fold. First, they suggest that images contain valuable information that can play an important role in clinical prognosis and other medical decisions. Second, they show that the SECT is a viable tool for the broader study of medical imaging informatics. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement

    Predictions from Lattice QCD

    Get PDF
    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic DKlνD\to Kl\nu decay, the decay constant of the DD meson, and the mass of the BcB_c meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd International Symposium on Lattice Field Theory, Dublin, July 25-3

    Case study: effects of colostrum ingestion on lactational performance,”

    Get PDF
    Abstract This study was designed to evaluate the effects of feeding two different volumes of colostrum immediately after birth on growth and lactational perfo
    corecore