1,442 research outputs found

    Onsager-Machlup theory and work fluctuation theorem for a harmonically driven Brownian particle

    Full text link
    We extend Tooru-Cohen analysis for nonequilirium steady state(NSS) of a Brownian particle to nonequilibrium oscillatory state (NOS) of Brownian particle by considering time dependent external drive protocol. We consider an unbounded charged Brownian particle in the presence of an oscillating electric field and prove work fluctuation theorem, which is valid for any initial distribution and at all times. For harmonically bounded and constantly dragged Brownian particle considered by Tooru and Cohen, work fluctuation theorem is valid for any initial condition(also NSS), but only in large time limit. We use Onsager-Machlup Lagrangian with a constraint to obtain frequency dependent work distribution function, and describe entropy production rate and properties of dissipation functions for the present system using Onsager-Machlup functional.Comment: 6 pages, 1 figur

    Controlling Molecular Scattering by Laser-Induced Field-Free Alignment

    Full text link
    We consider deflection of polarizable molecules by inhomogeneous optical fields, and analyze the role of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces spectacular rainbow-like features in the distribution of the scattering angle. Moreover, by preshaping molecular angular distribution with the help of short and strong femtosecond laser pulses, one may efficiently control the scattering process, manipulate the average deflection angle and its distribution, and reduce substantially the angular dispersion of the deflected molecules. We provide quantum and classical treatment of the deflection process. The effects of strong deflecting field on the scattering of rotating molecules are considered by the means of the adiabatic invariants formalism. This new control scheme opens new ways for many applications involving molecular focusing, guiding and trapping by optical and static fields

    Histocompatibility and Hematopoietic Transplantation in the Zebrafish

    Get PDF
    The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs) are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC) genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases

    Extended Heat-Fluctuation Theorems for a System with Deterministic and Stochastic Forces

    Full text link
    Heat fluctuations over a time \tau in a non-equilibrium stationary state and in a transient state are studied for a simple system with deterministic and stochastic components: a Brownian particle dragged through a fluid by a harmonic potential which is moved with constant velocity. Using a Langevin equation, we find the exact Fourier transform of the distribution of these fluctuations for all \tau. By a saddle-point method we obtain analytical results for the inverse Fourier transform, which, for not too small \tau, agree very well with numerical results from a sampling method as well as from the fast Fourier transform algorithm. Due to the interaction of the deterministic part of the motion of the particle in the mechanical potential with the stochastic part of the motion caused by the fluid, the conventional heat fluctuation theorem is, for infinite and for finite \tau, replaced by an extended fluctuation theorem that differs noticeably and measurably from it. In particular, for large fluctuations, the ratio of the probability for absorption of heat (by the particle from the fluid) to the probability to supply heat (by the particle to the fluid) is much larger here than in the conventional fluctuation theorem.Comment: 23 pages, 6 figures. Figures are now in color, Eq. (67) was corrected and a footnote was added on the d-dimensional cas

    Onsager-Machlup theory for nonequilibrium steady states and fluctuation theorems

    Full text link
    A generalization of the Onsager-Machlup theory from equilibrium to nonequilibrium steady states and its connection with recent fluctuation theorems are discussed for a dragged particle restricted by a harmonic potential in a heat reservoir. Using a functional integral approach, the probability functional for a path is expressed in terms of a Lagrangian function from which an entropy production rate and dissipation functions are introduced, and nonequilibrium thermodynamic relations like the energy conservation law and the second law of thermodynamics are derived. Using this Lagrangian function we establish two nonequilibrium detailed balance relations, which not only lead to a fluctuation theorem for work but also to one related to energy loss by friction. In addition, we carried out the functional integrals for heat explicitly, leading to the extended fluctuation theorem for heat. We also present a simple argument for this extended fluctuation theorem in the long time limit.Comment: 20 pages, 2 figure

    Effective pair potentials for spherical nanoparticles

    Full text link
    An effective description for spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, the effective potential generally has non-analytic points, but for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered, and shown to be related to those for solid nanoparticles. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London-Van der Waals, Morse, Buckingham, and Lennard-Jones potential. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure.Comment: 27 pages, 12 figures. Unified description of overlapping and nonoverlapping particles added, as well as a comparison with an idealized atomic descriptio

    Crucial role of sidewalls in velocity distributions in quasi-2D granular gases

    Get PDF
    Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their container are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified, other minor change

    An Extension of the Fluctuation Theorem

    Full text link
    Heat fluctuations are studied in a dissipative system with both mechanical and stochastic components for a simple model: a Brownian particle dragged through water by a moving potential. An extended stationary state fluctuation theorem is derived. For infinite time, this reduces to the conventional fluctuation theorem only for small fluctuations; for large fluctuations, it gives a much larger ratio of the probabilities of the particle to absorb rather than supply heat. This persists for finite times and should be observable in experiments similar to a recent one of Wang et al.Comment: 12 pages, 1 eps figure in color (though intelligible in black and white
    corecore