32 research outputs found

    Modeling quantum vibrational excitations in condensed-phase systems

    No full text
    In this paper, we present an extension of the theoretical–computational methodology based on the per- turbed matrix method and molecular dynamics simulations that we introduced in a recent paper (Daidone et al., Chem Phys Lett 488:213–218, 2010). This methodology models quantum vibrational states of polyatomic systems (i.e. beyond the one-dimensional vibrational mode case) embedded in a complex atomic-molecular environment such as liquid-state conditions. In the extended model, we now include the anharmonic correction to the excitation fre- quency of each mode and the excitonic coupling effects, providing a detailed description of the theoretical basis and an explicit scheme to achieve a very efficient implementa- tion of the method. Application of the proposed procedure to study the amide I band of the infrared spectra of a b-hairpin peptide shows that a quantitative and accurate reproduction of the experimental spectral variations due to folding– unfolding transition can be achieved

    Theoretical modeling of the absorption spectrum of aqueous riboflavin

    No full text
    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states

    Low- and high-density forms of liquid water revealed by a new medium-range order descriptor

    No full text
    We present in this paper a computational approach based on molecular dynamics simulations and graph theory to characterize the structure of liquid water considering not only the local structural arrangement within the first (or second) hydration shell, but also the medium- to long-range order. In particular, a new order parameter borrowed from the graph-theory framework, i.e., the node total communicability (NTC), is introduced to analyze the dynamic network of water molecules in the liquid phase. This order parameter is able not only to accurately report on the different high-density-liquid (HDL) and low-density-liquid (LDL) water phases postulated in the liquid–liquid phase transition hypothesis, but also to show that HDL-like forms are not homogeneous but rather composed by regions at different local density. In particular, the presence of patches at very high density with an increased number of interstitial water molecules is unveiled, both under pressure and at ambient conditions.We present in this paper a computational approach based on molecular dynamics simulations and graph theory to characterize the structure of liquid water considering not only the local structural arrangement within the first (or second) hydration shell, but also the medium- to long-range order. In particular, a new order parameter borrowed from the graph-theory framework, i.e., the node total communicability (NTC), is introduced to analyze the dynamic network of water molecules in the liquid phase. This order parameter is able not only to accurately report on the different high-density-liquid (HDL) and low-density-liquid (LDL) water phases postulated in the liquid–liquid phase transition hypothesis, but also to show that HDL-like forms are not homogeneous but rather composed by regions at different local density. In particular, the presence of patches at very high density with an increased number of interstitial water molecules is unveiled, both under pressure and at ambient conditions

    On the nature of solvatochromic effect: The riboflavin absorption spectrum as a case study

    No full text
    We present here the calculation of the absorption spectrum of riboflavin in acetonitrile and dimethyl sulfoxide using a hybrid quantum/classical approach, namely the perturbed matrix method, based on quantum mechanical calculations and molecular dynamics simulations. The calculated spectra are compared to the absorption spectrum of riboflavin previously calculated in water and to the experimental spectra obtained in all three solvents. The experimentally observed variations in the absorption spectra upon change of the solvent environment are well reproduced by the calculated spectra. In addition, the nature of the excited states of riboflavin interacting with different solvents is investigated, showing that environment effects determine a recombination of the gas-phase electronic states and that such a recombination is strongly affected by the polarity of the solvent inducing significant changes in the absorption spectra

    Thermodynamic Evolution of a Metamorphic Protein: A Theoretical-Computational Study of Human Lymphotactin

    No full text
    Metamorphic, or fold-switching, proteins feature different folds that are physiologically relevant. The human chemokine XCL1 (or Lymphotactin) is a metamorphic protein that features two native states, an alpha - beta and an all-beta fold, which have similar stability at physiological condition. Here, extended molecular dynamics (MD) simulations, principal component analysis of atomic fluctuations and thermodynamic modeling based on both the configurational volume and free energy landscape, are used to obtain a detailed characterization of the conformational thermodynamics of human Lymphotactin and of one of its ancestors (as was previously obtained by genetic reconstruction). Comparison of our computational results with the available experimental data show that the MD-based thermodynamics can explain the experimentally observed variation of the conformational equilibrium between the two proteins. In particular, our computational data provide an interpretation of the thermodynamic evolution in this protein, revealing the relevance of the configurational entropy and of the shape of the free energy landscape within the essential space ( i.e., the space defined by the generalized internal coordinates providing the largest, typically non-Gaussian, structural fluctuations)

    Simulation of the Amide 1 Infrared Spectrum in Photoinduced Peptide Folding/Unfolding Transitions

    No full text
    The amide I' infrared spectrum of a a-helical photoswitchable peptide is calculated here by means of a mixed quantum mechanics/molecular dynamics theoretical-computational methodology based on the perturbed matrix method (PMM). The contribution of specific residues to the total spectrum is also analyzed and the results compared to previous experimental spectroscopic data, obtained by means of site-specific isotope labeling at different residues, resulting in good agreement. One of the residues (Ala7) shows atypical spectroscopic behavior in both the experimental and calculated spectra, i.e., the folded-state amide I' band is shifted to higher frequencies than the unfolded-state one, while the other residues show the opposite behavior. The calculations reveal the origin of this uncommon spectroscopic trend and point to a crucial role of the molecular switch, the presence of which perturbs the conformational sampling of the peptide. Indeed, infrared spectra of the same peptide calculated in the absence of the molecular switch show that the single-residue spectrum of Ala7 does not have any distinguishing feature, resembling the spectra of the other analyzed residues

    New insight into the IR-spectra/structure relationship in amyloid fibrils: a theoretical study on a prion peptide

    No full text
    Molecular-level structural information on amyloid aggregates is of great importance for the understanding of protein-misfolding-related deseases. Nevertheless, this kind of information is experimentally difficult to obtain. In this work, we used molecular dynamics (MD) simulations combined with a mixed quantum mechanics/molecular mechanics theoretical methodology, the perturbed matrix method (PMM), in order to study the amide I' IR spectrum of fibrils formed by a short peptide, the H1 peptide, derived from residues 109 through 122 of the Syrian hamster prion protein. The PMM/MD approach allows isolation of the amide I' signal arising from any desired peptide group of the polypeptide chain and quantification of the effect of the excitonic coupling on the frequency position. The calculated single-residue signals were found to be in good agreement with the experimental site-specific spectra obtained by means of isotope-labeled IR spectroscopy, providing a means for their interpretation at the molecular level. In particular, our results confirm the experimental hypothesis that residues ala117 are aligned in all strands and that the alignment gives rise to a red shift of the corresponding site-specific amide I' mode due to strong excitonic coupling among the ala117 peptide groups. In addition, our data show that a red shift of the amide I' band due to strong excitonic coupling can also occur for amino acids adjacent in sequence to the aligned ones. Thus, a red shift of the signal of a given isotope-labeled amino acid does not necessarily imply that the peptide groups under consideration are aligned in the beta-sheet

    Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces

    No full text
    Antifreeze proteins (AFPs) have the ability to inhibit ice growth by binding to ice nuclei. Their ice-binding mechanism is still unclear, yet the hydration layer is thought to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of two AFPs and two non-AFPs. The calculated shell thickness and density of the AFPs do not feature any relevant difference with respect to the non-AFPs. Moreover, the hydration shell density is always higher than the bulk density and, thus, no low-density, ice-like layer is detected at the ice-binding surface (IBS) of AFPs. Instead, we observe local water-density differences in AFPs between the IBS (lower density) and the non-IBS (higher density). The lower solvent density at the ice-binding site can pave the way to the protein binding to ice nuclei, while the higher solvent density at the non-ice-binding surfaces might provide protection against ice growth

    A computational insight into the relationship between side chain IR line shapes and local environment in fibril-like structures

    No full text
    Infrared spectroscopy is a widely used technique to characterize protein structures and protein mediated processes. While the amide I band provides information on proteins' secondary structure, amino acid side chains are used as infrared probes for the investigation of protein reactions and local properties. In this paper, we use a hybrid quantum mechanical/classical molecular dynamical approach based on the perturbed matrix method to compute the infrared band due to the C=O stretching mode of amide-containing side chains. We calculate, at first, the infrared band of zwitterionic glutamine in water and obtain results in very good agreement with the experimental data. Then, we compute the signal arising from glutamine side chains in a microcrystal of the yeast prion Sup35-derived peptide, GNNQQNY, with a fibrillar structure. The infrared bands obtained by selective isotopic labeling of the two glutamine residues, Q4 and Q5, of each peptide were experimentally used to investigate the local hydration in the fibrillar microcrystal. The experimental spectra of the two glutamine residues, which experience different hydration environments, feature different spectral signals that are well reproduced by the corresponding calculated spectra. In addition, the analysis of the simulated spectra clarifies the molecular origin of the experimentally observed spectroscopic differences that arise from the different local electric field experienced by the two glutamine residues, which is, in turn, determined by a different hydrogen bonding pattern
    corecore