32 research outputs found

    An MRI evaluation of grey matter damage in African Americans with MS

    Get PDF
    Objective: Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in the former the disease course tends to be more severe. In order to clarify the MRI correlates of disease severity in AAs, we performed a multimodal brain MRI study to comprehensively assess the extent of grey matter (GM) damage and the degree of functional adaptation to structural damage in AAs with MS. Methods: In this cross-sectional study, we characterized GM damage in terms of focal lesions and volume loss and functional adaptation during the execution of a simple motor task on a sample of 20 AAs and 20 CAs with MS and 20 healthy controls (CTRLs). Results: In AAs, we observed a wider range of EDSS scores than CAs, with multisystem involvement being more likely in AAs (p < 0.01). While no significant differences were detected in lesion loads and global brain volumes, AAs showed regional atrophy in the posterior lobules of cerebellum, temporo-occipital and frontal regions in comparison with CAs (p < 0.01), with cerebellar atrophy being the best metric in differentiating AAs from CAs (p = 0.007, AUC = 0.96 and p = 0.005, AUC = 0.96, respectively for right and left cerebellar clusters). In AAs, the functional analysis of cortical activations showed an increase in task-related activation of areas involved in high level processing and a decreased activation in the medial prefrontal cortex compared to CAs. Interpretation: In our study, the direct comparison of AAs and CAs points to cerebellar atrophy as the main difference between subgroups

    Prevalence of Grey Matter Pathology in Early Multiple Sclerosis Assessed by Magnetization Transfer Ratio Imaging

    Get PDF
    The aim of the study was to assess the prevalence, the distribution and the impact on disability of grey matter (GM) pathology in early multiple sclerosis. Eighty-eight patients with a clinically isolated syndrome with a high risk developing multiple sclerosis were included in the study. Forty-four healthy controls constituted the normative population. An optimized statistical mapping analysis was performed to compare each subject's GM Magnetization Transfer Ratio (MTR) imaging maps with those of the whole group of controls. The statistical threshold of significant GM MTR decrease was determined as the maximum p value (p<0.05 FDR) for which no significant cluster survived when comparing each control to the whole control population. Using this threshold, 51% of patients showed GM abnormalities compared to controls. Locally, 37% of patients presented abnormalities inside the limbic cortex, 34% in the temporal cortex, 32% in the deep grey matter, 30% in the cerebellum, 30% in the frontal cortex, 26% in the occipital cortex and 19% in the parietal cortex. Stepwise regression analysis evidenced significant association (p = 0.002) between EDSS and both GM pathology (p = 0.028) and T2 white matter lesions load (p = 0.019). In the present study, we evidenced that individual analysis of GM MTR map allowed demonstrating that GM pathology is highly heterogeneous across patients at the early stage of MS and partly underlies irreversible disability

    Intrathecal synthesis of IgM measured after a first demyelinating event suggestive of multiple sclerosis is associated with subsequent MRI brain lesion accrual

    No full text
    Durante, Laurence Zaaraoui, Wafaa Rico, Audrey Crespy, Lydie Wybrecht, Delphine Faivre, Anthony Reuter, Francoise Malikova, Irina Pommier, Gilbert Confort-Gouny, Sylviane Cozzone, Patrick J Ranjeva, Jean-Philippe Pelletier, Jean Boucraut, Jose Audoin, Bertrand Research Support, Non-U.S. Gov't England Multiple sclerosis (Houndmills, Basingstoke, England) Mult Scler. 2012 May;18(5):587-91. Epub 2011 Sep 30.BACKGROUND: Previous studies have demonstrated that intrathecal synthesis of IgM is observed in multiple sclerosis (MS) and correlates with a worse disease course. These results suggest that IgM participates in the formation of MS lesions. OBJECTIVE: The aim of the present study was to assess the potential association between the level of intrathecal synthesis of IgM measured after a clinically isolated syndrome (CIS) and the subsequent formation of brain lesions. METHODS: Fifty seven patients with a CIS and a high risk developing MS were enrolled in a longitudinal study. Examination of cerebrospinal fluid was performed after the CIS and included measures of intrathecal IgM and IgG synthesis. Patients were assessed with the same 1.5 Tesla magnetic resonance imaging (MRI) system at baseline and after a mean follow-up period of 49 months (range 36-60). Spearman Rank correlation was used to assess the potential correlations between levels of intrathecal immunoglobulin synthesis and MRI data. RESULTS: The level of intrathecal IgM synthesis was correlated with the number of gadolinium-enhancing lesions at baseline (p = 0.01) and with accrual of brain lesions during the follow-up period (p = 0.02). By taking into account brain sub-regions, we demonstrated that the level of intrathecal IgM synthesis was only correlated with the increased number of lesions in the periventricular regions (p = 0.004). The level of intrathecal IgG synthesis was not correlated with any MRI data. CONCLUSION: The present longitudinal study demonstrates that the level of intrathecal IgM synthesis measured after a CIS is associated with subsequent lesion accrual during the first years of MS. This result emphasizes the involvement of IgM in plaque formation

    Voxelwise analysis of conventional magnetic resonance imaging to predict future disability in early relapsing-remitting multiple sclerosis

    No full text
    Wybrecht, Delphine Reuter, Francoise Zaaraoui, Wafaa Faivre, Anthony Crespy, Lydie Rico, Audrey Malikova, Irina Confort-Gouny, Sylviane Soulier, Elisabeth Cozzone, Patrick J Pelletier, Jean Ranjeva, Jean-Philippe Audoin, Bertrand England Multiple sclerosis (Houndmills, Basingstoke, England) Mult Scler. 2012 Nov;18(11):1585-91. doi: 10.1177/1352458512442991. Epub 2012 Mar 27.BACKGROUND: The ability of conventional magnetic resonance imaging (MRI) to predict subsequent physical disability and cognitive deterioration after a clinically isolated syndrome (CIS) is weak. OBJECTIVES: We aimed to investigate whether conventional MRI changes over 1 year could predict cognitive and physical disability 5 years later in CIS. We performed analyses using a global approach (T(2) lesion load, number of T(2) lesions), but also a topographic approach. METHODS: This study included 38 patients with a CIS. At inclusion, 10 out of 38 patients fulfilled the 2010 revised McDonald's criteria for the diagnosis of multiple sclerosis. Expanded Disability Status Scale (EDSS) evaluation was performed at baseline, year 1 and year 5, and cognitive evaluation at baseline and year 5. T(2)-weighted MRI was performed at baseline and year 1. We used voxelwise analysis to analyse the predictive value of lesions location for subsequent disability. RESULTS: Using the global approach, no correlation was found between MRI and clinical data. The occurrence or growth of new lesions in the brainstem was correlated with EDSS changes over the 5 years of follow-up. The occurrence or growth of new lesions in cerebellum, thalami, corpus callosum and frontal lobes over 1 year was correlated with cognitive impairment at 5 years. CONCLUSION: The assessment of lesion location at the first stage of multiple sclerosis may be of value to predict future clinical disability

    Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study

    No full text
    Zaaraoui, Wafaa Konstandin, Simon Audoin, Bertrand Nagel, Armin M Rico, Audrey Malikova, Irina Soulier, Elisabeth Viout, Patrick Confort-Gouny, Sylviane Cozzone, Patrick J Pelletier, Jean Schad, Lothar R Ranjeva, Jean-Philippe Research Support, Non-U.S. Gov't United States Radiology Radiology. 2012 Sep;264(3):859-67. doi: 10.1148/radiol.12112680. Epub 2012 Jul 17.PURPOSE: To quantify brain sodium accumulations and characterize for the first time the spatial location of sodium abnormalities at different stages of relapsing-remitting (RR) multiple sclerosis (MS) by using sodium 23 ((23)Na) magnetic resonance (MR) imaging. MATERIALS AND METHODS: This study was approved by the local committee on ethics, and written informed consent was obtained from all participants. Three-dimensional (23)Na MR imaging data were obtained with a 3.0-T unit in two groups of patients with RR MS-14 with early RR MS (disease duration 5 years)-and 15 control subjects. Quantitative assessment of total sodium concentration (TSC) levels within compartments (MS lesions, white matter [WM], and gray matter [GM]) as well as statistical mapping analyses of TSC abnormalities were performed. RESULTS: TSC was increased inside demyelinating lesions in both groups of patients, whereas increased TSC was observed in normal-appearing WM and GM only in those with advanced RR MS. In patients, increased TSC inside GM was correlated with disability (as determined with the Expanded Disability Status Scale [EDSS] score; P = .046, corrected) and lesion load at T2-weighted imaging (P = .003, corrected) but not with disease duration (P = .089, corrected). Statistical mapping analysis showed confined TSC increases inside the brainstem, cerebellum, and temporal poles in early RR MS and widespread TSC increases that affected the entire brain in advanced RR MS. EDSS score correlated with TSC increases inside motor networks. CONCLUSION: TSC accumulation dramatically increases in the advanced stage of RR MS, especially in the normal-appearing brain tissues, concomitant with disability. Brain sodium MR imaging may help monitor the occurrence of tissue injury and disability

    Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis

    No full text
    Faivre, Anthony Rico, Audrey Zaaraoui, Wafaa Crespy, Lydie Reuter, Francoise Wybrecht, Delphine Soulier, Elisabeth Malikova, Irina Confort-Gouny, Sylviane Cozzone, Patrick J Pelletier, Jean Ranjeva, Jean-Philippe Audoin, Bertrand Research Support, Non-U.S. Gov't England Multiple sclerosis (Houndmills, Basingstoke, England) Mult Scler. 2012 Sep;18(9):1251-8. doi: 10.1177/1352458511435930. Epub 2012 Feb 3.OBJECTIVE: The present study aims to determine the clinical counterpart of brain resting-state networks reorganization recently evidenced in early multiple sclerosis. METHODS: Thirteen patients with early relapsing-remitting multiple sclerosis and 14 matched healthy controls were included in a resting state functional MRI study performed at 3 T. Data were analyzed using group spatial Independent Component Analysis using concatenation approach (FSL 4.1.3) and double regression analyses (SPM5) to extract local and global levels of connectivity inside various resting state networks (RSNs). Differences in global levels of connectivity of each network between patients and controls were assessed using Mann-Whitney U-test. In patients, relationship between clinical data (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite Score - MSFC) and global RSN connectivity were assessed using Spearman rank correlation. RESULTS: Independent component analysis provided eight consistent neuronal networks involved in motor, sensory and cognitive processes. For seven RSNs, the global level of connectivity was significantly increased in patients compared with controls. No significant decrease in RSN connectivity was found in early multiple sclerosis patients. MSFC values were negatively correlated with increased RSN connectivity within the dorsal frontoparietal network (r = -0.811, p = 0.001), the right ventral frontoparietal network (r = - 0.587, p = 0.045) and the prefronto-insular network (r = -0.615, p = 0.033). CONCLUSIONS: This study demonstrates that resting state networks reorganization is strongly associated with disability in early multiple sclerosis. These findings suggest that resting state functional MRI may represent a promising surrogate marker of disease burden
    corecore