9,044 research outputs found

    Neural network-based intrinsic structure relationship of TC20 titanium alloy for medical applications

    Get PDF
    Isothermal constant strain rate compression experiments were carried out on TC20 titanium alloy using a Gleeble- 1500 thermal simulation tester to investigate its high temperature flow behaviour at deformation temperatures of 750 - 900 °C and strain rates of 0,001 - 1 s-1. The results show that the flow stress basically decreases with increasing deformation temperature and increases with increasing strain rate. The correlation coefficients and mean relative errors were 0,998 and 5,06 % respectively, proving that the BP neural network-based intrinsic structure model is effective in predicting the flow stress of the alloy

    Narrowing the filter cavity bandwidth via optomechanical interaction

    Full text link
    We propose using optomechanical interaction to narrow the bandwidth of filter cavities for achieving frequency-dependent squeezing in advanced gravitational-wave detectors, inspired by the idea of optomechanically induced transparency. This not only allows us to achieve narrow bandwidth, comparable to the detection band of few hundred Hz, with tabletop optical cavities, but also to tune the bandwidth over a wide range, which is ideal for optimizing sensitivity for different gravitational-wave sources. The experimental challenge for its implementation is the stringent requirement on low thermal noise, which would need superb mechanical quality factor that is quite difficult to achieve by using currently-available low-loss mechanical oscillators; one possible solution is to use optical dilution of the mechanical damping, which can considerably relax the requirement on the mechanics.Comment: 5 pages + 3 appendix. 4 figures and 2 tables Accepted by Physical Review Letter

    Viral video style: A closer look at viral videos on YouTube

    Full text link
    Viral videos that gain popularity through the process of Internet sharing are having a profound impact on society. Existing studies on viral videos have only been on small or confidential datasets. We collect by far the largest open benchmark for viral video study called CMU Viral Video Dataset, and share it with researchers from both academia and industry. Having verified existing observations on the dataset, we discover some interesting characteristics of viral videos. Based on our analysis, in the second half of the paper, we propose a model to forecast the future peak day of viral videos. The application of our work is not only important for advertising agencies to plan advertising campaigns and estimate costs, but also for companies to be able to quickly respond to rivals in viral marketing campaigns. The proposed method is unique in that it is the first attempt to incorporate video metadata into the peak day prediction. The empirical results demonstrate that the proposed method outperforms the state-of-the-art methods, with statistically significant differences. Copyright 2014 ACM

    Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States

    Full text link
    Combining first-principles calculations and spin- and angle-resolved photoemission spectroscopy measurements, we identify the helical spin textures for three different Dirac cone states in the interfaced systems of a 2D topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by Rashba effect, and the hybridized Dirac cone between the former two states. Further orbit- and atom-resolved analysis shows that s and pz orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while px and py orbits have an additional radial spin component. The Dirac cone states may reside on different atomic layers, but have the same spin texture. Our results suggest that the unique spin texture of Dirac cone states is a signature property of spin-orbit coupling, independent of topology

    Neutron Scattering Measurements of Spatially Anisotropic Magnetic Exchange Interactions in Semiconducting K0.85Fe1.54Se2 (TN=280 K)

    Full text link
    We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic (AFM) order in semiconducting K0.85_{0.85}Fe1.54_{1.54}Se2_2 (TNT_N=280280 K). We show that the spin wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic in-plane couplings at TT= 55 K. At high temperature (TT= 300300 K) above TNT_N, short range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the in-plane anisotropic magnetic couplings are a fundamental property of the iron based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.Comment: 5 pages, 4 figure
    • …
    corecore