129 research outputs found
Expert Supervisors\u27 Priorities When Working With Easy and Challenging Supervisees
Using Kemer, Borders, and Willse\u27s ( 2014) concept map as a conceptual model, the authors aimed to understand expert supervisors\u27 priorities with their easy and challenging supervisees. Experts\u27 priorities with easy and challenging supervisees were represented in different parts of the concept map, and they seemed to individualize their work with challenging supervisees
Experience Filter: Using Past Experiences on Unseen Tasks or Environments
One of the bottlenecks of training autonomous vehicle (AV) agents is the
variability of training environments. Since learning optimal policies for
unseen environments is often very costly and requires substantial data
collection, it becomes computationally intractable to train the agent on every
possible environment or task the AV may encounter. This paper introduces a
zero-shot filtering approach to interpolate learned policies of past
experiences to generalize to unseen ones. We use an experience kernel to
correlate environments. These correlations are then exploited to produce
policies for new tasks or environments from learned policies. We demonstrate
our methods on an autonomous vehicle driving through T-intersections with
different characteristics, where its behavior is modeled as a partially
observable Markov decision process (POMDP). We first construct compact
representations of learned policies for POMDPs with unknown transition
functions given a dataset of sequential actions and observations. Then, we
filter parameterized policies of previously visited environments to generate
policies to new, unseen environments. We demonstrate our approaches on both an
actual AV and a high-fidelity simulator. Results indicate that our experience
filter offers a fast, low-effort, and near-optimal solution to create policies
for tasks or environments never seen before. Furthermore, the generated new
policies outperform the policy learned using the entire data collected from
past environments, suggesting that the correlation among different environments
can be exploited and irrelevant ones can be filtered out.Comment: Accepted at IEEE Intelligent Vehicles Symposium (IV) 202
Efficacy, safety, tolerability and pharmacokinetics of a novel human immune globulin subcutaneous, 20%: a Phase 2/3 study in Europe in patients with primary immunodeficiencies
A highly concentrated (20%) immunoglobulin (Ig)G preparation for subcutaneous administration (IGSC 20%), would offer a new option for antibody replacement therapy in patients with primary immunodeficiency diseases (PIDD). The efficacy, safety, tolerability and pharmacokinetics of IGSC 20% were evaluated in a prospective trial in Europe in 49 patients with PIDD aged 2-67 years. Over a median of 358 days, patients received 2349 IGSC 20% infusions at monthly doses equivalent to those administered for previous intravenous or subcutaneous IgG treatment. The rate of validated acute bacterial infections (VASBIs) was significantly lower than 1 per year (0.022/patient-year, P /= 8 g/l. There was no serious adverse event (AE) deemed related to IGSC 20% treatment; related non-serious AEs occurred at a rate of 0.101 event/infusion. The incidence of local related AEs was 0.069 event/infusion (0.036 event/infusion, when excluding a 13-year-old patient who reported 79 of 162 total related local AEs). The incidence of related systemic AEs was 0.032 event/infusion. Most related AEs were mild, none were severe. For 64.6% of patients and in 94.8% of IGSC 20% infusions, no local related AE occurred. The median infusion duration was 0.95 (range = 0.3-4.1) h using mainly one to two administration sites [median = 2 sites (range = 1-5)]. Almost all infusions (99.8%) were administered without interruption/stopping or rate reduction. These results demonstrate that IGSC 20% provides an effective and well-tolerated therapy for patients previously on intravenous or subcutaneous treatment, without the need for dose adjustment
Ab-initio structural, elastic, and vibrational properties of carbon nanotubes
A study based on ab initio calculations is presented on the estructural,
elastic, and vibrational properties of single-wall carbon nanotubes with
different radii and chiralities. We use SIESTA, an implementation of
pseudopotential-density-functional theory which allows calculations on systems
with a large number of atoms per cell. Different quantities like bond
distances, Young moduli, Poisson ratio and the frequencies of different phonon
branches are monitored versus tube radius. The validity of expectations based
on graphite is explored down to small radii, where some deviations appear
related to the curvature effects. For the phonon spectra, the results are
compared with the predictions of the simple zone-folding approximation. Except
for the known defficiencies of this approximation in the low-frequency
vibrational regions, it offers quite accurate results, even for relatively
small radii.Comment: 13 pages, 7 figures, submitted to Phys. Rev. B (11 Nov. 98
Value of minimum intensity projections for chest CT in COVID-19 patients
Purpose: To investigate whether minimum intensity projection (MinIP) reconstructions enable more accurate depiction of pulmonary ground-glass opacity (GGO) compared to standard transverse sections and multiplanar reformat (MPR) series in patients with suspected coronavirus disease 2019 (COVID-19). Method: In this multinational study, chest CT scans of 185 patients were retrospectively analyzed. Diagnostic accuracy, diagnostic confidence, image quality regarding the assessment of GGO, as well as subjective time-efficiency of MinIP and standard MPR series were analyzed based on the assessment of six radiologists. In addition, the suitability for COVID-19 evaluation, image quality regarding GGO and subjective time-efficiency in clinical routine was assessed by five clinicians. Results: The reference standard revealed a total of 149 CT scans with pulmonary GGO. MinIP reconstructions yielded significantly higher sensitivity (99.9 % vs 95.6 %), specificity (95.8 % vs 86.1 %) and accuracy (99.1 % vs 93.8 %) for assessing of GGO compared with standard MPR series. MinIP reconstructions achieved significantly higher ratings by radiologists concerning diagnostic confidence (medians, 5.00 vs 4.00), image quality (medians, 4.00 vs 4.00), contrast between GGO and unaffected lung parenchyma (medians, 5.00 vs 4.00) as well as subjective time-efficiency (medians, 5.00 vs 4.00) compared with MPR-series (all P <.001). Clinicians preferred MinIP reconstructions for COVID-19 assessment (medians, 5.00 vs 3.00), image quality regarding GGO (medians, 5.00 vs 3.00) and subjective time-efficiency in clinical routine (medians, 5.00 vs 3.00). Conclusions: MinIP reconstructions improve the assessment of COVID-19 in chest CT compared to standard images and may be suitable for routine application
Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain
Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development
Selective IgA Deficiency
Immunoglobulin A (IgA) deficiency is the most common primary immunodeficiency defined as decreased serum level of IgA in the presence of normal levels of other immunoglobulin isotypes. Most individuals with IgA deficiency are asymptomatic and identified coincidentally. However, some patients may present with recurrent infections of the respiratory and gastrointestinal tracts, allergic disorders, and autoimmune manifestations.
Although IgA is the most abundant antibody isotype produced in the body, its functions are not clearly understood. Subclass IgA1 in monomeric form is mainly found in the blood circulation, whereas subclass IgA2 in dimeric form is the dominant immunoglobulin in mucosal secretions. Secretory IgA appears to have prime importance in immune exclusion of pathogenic microorganisms and maintenance of intestinal homeostasis. Despite this critical role, there may be some compensatory mechanisms that would prevent disease manifestations in some IgA-deficient individuals.
In IgA deficiency, a maturation defect in B cells to produce IgA is commonly observed. Alterations in transmembrane activator and calcium modulator and cyclophilin ligand interactor gene appear to act as disease-modifying mutations in both IgA deficiency and common variable immunodeficiency, two diseases which probably lie in the same spectrum. Certain major histocompatibility complex haplotypes have been associated with susceptibility to IgA deficiency.
The genetic basis of IgA deficiency remains to be clarified. Better understanding of the production and function of IgA is essential in elucidating the disease mechanism in IgA deficiency
- …