664,413 research outputs found

    Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles

    Full text link
    We present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain-wall causes an electron wavefunction phase-shift of 5π\approx 5\pi. The phase-shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain-wall. Dephasing time in Co at 0.03K0.03K is short, τϕps\tau_\phi\sim ps, which we attribute to the strong magnetocrystalline anisotropy.Comment: 5 pages 3 figs colou

    A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Get PDF
    This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity

    Quantum-disordered slave-boson theory of underdoped cuprates

    Full text link
    We study the stability of the spin gap phase in the U(1) slave-boson theory of the t-J model in connection to the underdoped cuprates. We approach the spin gap phase from the superconducting state and consider the quantum phase transition of the slave-bosons at zero temperature by introducing vortices in the boson superfluid. At finite temperatures, the properties of the bosons are different from those of the strange metal phase and lead to modified gauge field fluctuations. As a result, the spin gap phase can be stabilized in the quantum critical and quantum disordered regime of the boson system. We also show that the regime of quantum disordered bosons with the paired fermions can be regarded as the strong coupling version of the recently proposed nodal liquid theory.Comment: 5 pages, Replaced by the published versio
    corecore