1,484 research outputs found

    Breakdown of Conventional Factorization for Isolated Photon Cross Sections

    Get PDF
    Using e+e−→γ+Xe^+e^-\rightarrow\gamma + X as an example, we show that the conventional factorization theorem in perturbative quantum chromodynamics breaks down for isolated photon cross sections in a well defined part of phase space. Implications and physical consequences are discussed.Comment: 11 pages, RevTex, 1 figure in postscrip

    Proper Scaling of the Anomalous Hall Effect

    Full text link
    Working with epitaxial films of Fe, we succeeded in independent control of different scattering processes in the anomalous Hall effect. The result appropriately accounted for the role of phonons, thereby clearly exposing the fundamental flaws of the standard plot of the anomalous Hall resistivity versus longitudinal resistivity. A new scaling has been thus established that allows an unambiguous identification of the intrinsic Berry curvature mechanism as well as the extrinsic skew scattering and side-jump mechanisms of the anomalous Hall effect.Comment: 5 pages, 4 figure

    Exploration of chlamydial type III secretion system reconstitution in Escherichia coli

    Get PDF
    BACKGROUND: Type III secretion system is a virulent factor for many pathogens, and is thought to play multiple roles in the development cycle and pathogenesis of chlamydia, an important human pathogen. However, due to the obligate intracellular parasitical nature of chlamydiae and a lack of convenient genetic methodology for the organisms, very limited approaches are available to study the chlamydial type III secretion system. In this study, we explored the reconstitution of a chlamydial type III secretion in Escherichia coli. RESULTS: We successfully cloned all 6 genomic DNA clusters of the chlamydial type III secretion system into three bacterial plasmids. 5 of the 6 clusters were found to direct mRNA synthesis from their own promoters in Escherichia coli transformed with the three plasmids. Cluster 5 failed to express mRNA using its own promoters. However, fusion of cluster 5 to cluster 6 resulted in the expression of cluster 5 mRNA. Although only two of the type III secretion system proteins were detected transformed E. coli due to limited antibody availability, type III secretion system-like structures were detected in ultrathin sections in a small proportion of transformed E. coli. CONCLUSIONS: We have successfully generated E. coli expressing all genes of the chlamydial type III secretion system. This serves as a foundation for optimal expression and assembly of the recombinant chlamydial type III secretion system, which may be extremely useful for the characterization of the chlamydial type III secretion system and for studying its role in chlamydial pathogenicity

    Isolated Prompt Photon Production

    Get PDF
    We show that the conventionally defined partonic cross section for the production of isolated prompt photons is not an infrared safe quantity. We work out the case of e+e−→γ+Xe^+e^- \to \gamma + X in detail, and we discuss implications for hadron reactions such as ppˉ→γ+Xp \bar{p} \to \gamma + X.Comment: 8 pages, latex2e, 2 figures, uses Moriond.sty; Invited paper presented by E. L. Berger at the XXXIInd Rencontres de Moriond, QCD and High Energy Hadronic Interactions, Les Arcs, Savoie, France, March 22 - 29, 199

    Significant Improvement in TiOâ‚‚ Photocatalytic Activity through Controllable ZrOâ‚‚ Deposition

    Get PDF
    ZrO2 was deposited on anatase TiO2 nanoparticles using 5-80 cycles of atomic layer deposition (ALD). The photocatalytic activity of all samples was evaluated based on the degradation of methylene blue (MB) solution under UV light. The TiO2 sample with 45 cycles of ZrO2 deposition (45c-Zr/TiO2, 1.1 wt% ZrO2) was proved to be the most efficient catalyst with a degradation kinetic constant 10 times larger than that of the pure TiO2 sample. All samples were characterized using inductively coupled plasma atomic emission spectroscopy (ICP-AES), nitrogen adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra analysis (UV-DRS), Raman and photoluminescence (PL) techniques. The high photocatalytic activity of 45c-Zr/TiO2 can be attributed to stronger adsorption in the ultraviolet region and a reduction in the recombination rate of electron/hole pairs

    Isolated Prompt Photon Cross Sections

    Get PDF
    We show that the conventionally defined partonic cross section for the production of isolated prompt photons is not an infrared safe quantity. We work out the case of e+e−→γ+Xe^+e^-\to\gamma + X, and discuss implications for hadron reactions.Comment: 4 pages, LaTeX, 2 postscript figures, uses sprocl.sty. Invited paper presented by E. L. Berger at DPF'96, 1996 Meeting of the Division of Particles and Fields of the American Physical Society, Minneapolis, MN, August 10-15, 1996. Report-no: ANL-HEP-CP-96-7

    Photoelectron properties of DNA and RNA bases from many-body perturbation theory

    Full text link
    The photoelectron properties of DNA and RNA bases are studied using many-body perturbation theory within the GW approximation, together with a recently developed Lanczos-chain approach. Calculated vertical ionization potentials, electron affinities, and total density of states are in good agreement with experimental values and photoemission spectra. The convergence benchmark demonstrates the importance of using an optimal polarizability basis in the GW calculations. A detailed analysis of the role of exchange and correlation in both many-body and density-functional theory calculations shows that while self-energy corrections are strongly orbital-dependent, they nevertheless remain almost constant for states that share the same bonding character. Finally, we report on the inverse lifetimes of DNA and RNA bases, that are found to depend linearly on quasi-particle energies for all deep valence states. In general, our G0W0-Lanczos approach provides an efficient yet accurate and fully converged description of quasiparticle properties of five DNA and RNA bases

    Na+-leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition

    Get PDF
    Background/Aims: Uterine contractility is controlled by electrical signals generated by myometrial smooth muscle cells. Because aberrant electrical signaling may cause inefficient uterine contractions and poor reproductive outcomes, there is great interest in defining the ion channels that regulate uterine excitability. In human myometrium, the Na+ leak channel, non-selective (NALCN) contributes to a gadolinium-sensitive, Na+-dependent leak current. The aim of this study was to determine the role of NALCN in regulating uterine excitability and examine its involvement in parturition. Methods: Wildtype C57BL/6J mice underwent timed-mating and NALCN uterine expression was measured at several time points across pregnancy including pregnancy days 7, 10, 14, 18 and 19. Sharp electrode current clamp was used to measure uterine excitability at these same time points. To determine NALCN’s contribution to myometrial excitability and pregnancy outcomes, we created smooth-muscle-specific NALCN knockout mice by crossing NALCNfx/fx mice with myosin heavy chain Cre (MHCCreeGFP) mice. Parturition outcomes were assessed by observation via surveillance video recording cre control, flox control, smNALCN+/-, and smNALCN-/- mice. Myometrial excitability was compared between pregnancy day 19 flox controls and smNALCN-/- mice. Results: We found that in the mouse uterus, NALCN protein levels were high early in pregnancy, decreased in mid and late pregnancy, and then increased in labor and postpartum. Sharp electrode current clamp recordings of mouse longitudinal myometrial samples from pregnancy days 7, 10, 14, 18, and 19 revealed day-dependent increases in burst duration and interval and decreases in spike density. NALCN smooth muscle knockout mice had reduced myometrial excitability exemplified by shortened action potential bursts, and an increased rate of abnormal labor, including prolonged and dysfunctional labor. Conclusions: Together, our findings demonstrate that the Na+ conducting channel NALCN contributes to the myometrial action potential waveform and is important for successful labor outcomes
    • …
    corecore