335 research outputs found

    Multiple Metabolisms Constrain the Anaerobic Nitrite Budget in the Eastern Tropical South Pacific

    Get PDF
    The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Lodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption. ©2017. American Geophysical Union. All Rights Reserved

    Assessing phytoplankton nutritional status and potential impact of wet deposition in seasonally oligotrophic waters of the Mid‐Atlantic Bight

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 3203-3211, doi:10.1002/2017GL075361.To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid‐Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon‐13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain‐stimulated new production.US National Science Foundation Grant Numbers: OCE‐1260454, OCE‐1260454, OCE‐12605742018-09-1

    Assessing Phytoplankton Nutritional Status and Potential Impact of Wet Deposition in Seasonally Oligotrophic Waters of the Mid-Atlantic Bight

    Get PDF
    To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid-Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon-13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain-stimulated new production. Plain Language Summary Human activities have substantially increased the atmospheric loading and deposition of biologically available nitrogen, an essential nutrient, to the surface ocean. Such atmospheric inputs to the ocean will likely impact on oceanic primary production by phytoplankton, and thus the marine ecosystem and ocean carbon cycling, although the scale and spatial distribution of such impacts are not well known. In this study, we used shipboard experiments, observations, and laboratory measurements to assess the potential impacts of atmospheric nitrogen deposition in rainfall on oceanic waters of the Mid-Atlantic Bight, off the U.S. eastern seaboard, during the summer. We find that the growth of phytoplankton in these waters is limited by the availability of nitrogen during summer, such that nitrogen added to the ocean by summer rain events can considerably stimulate phytoplankton primary production. However, the biological impact of these rainwater nitrogen inputs appears to be limited by the availability of another essential nutrient, phosphorus, which is present at relatively low concentrations in rainwater. This is the first study to directly examine the nutritional status of phytoplankton in relation to the impacts of rainwater nitrogen addition on primary production in oceanic waters off the U.S. East Coast

    Exploring the divergence between self-assessment and self-monitoring

    Get PDF
    Many models of professional self-regulation call upon individual practitioners to take responsibility both for identifying the limits of their own skills and for redressing their identified limits through continuing professional development activities. Despite these expectations, a considerable literature in the domain of self-assessment has questioned the ability of the self-regulating professional to enact this process effectively. In response, authors have recently suggested that the construction of self-assessment as represented in the self-regulation literature is, itself, problematic. In this paper we report a pair of studies that examine the relationship between self-assessment (a global judgment of one’s ability in a particular domain) and self-monitoring (a moment-by-moment awareness of the likelihood that one maintains the skill/knowledge to act in a particular situation). These studies reveal that, despite poor correlations between performance and self-assessments (consistent with what is typically seen in the self-assessment literature), participant performance was strongly related to several measures of self-monitoring including: the decision to answer or defer responding to a question, the amount of time required to make that decision to answer or defer, and the confidence expressed in an answer when provided. This apparent divergence between poor overall self-assessment and effective self-monitoring is considered in terms of how the findings might inform our understanding of the cognitive mechanisms yielding both self-monitoring judgments and self-assessments and how that understanding might be used to better direct education and learning efforts

    Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells

    Get PDF
    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD

    An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function

    Get PDF
    Both endothelial and immune dysfunction contribute to the high mortality rate in human sepsis, but the underlying mechanisms are unclear. In response to infection, interferon-γ activates indoleamine 2,3-dioxygenase (IDO) which metabolizes the essential amino acid tryptophan to the toxic metabolite kynurenine. IDO can be expressed in endothelial cells, hepatocytes and mononuclear leukocytes, all of which contribute to sepsis pathophysiology. Increased IDO activity (measured by the kynurenine to tryptophan [KT] ratio in plasma) causes T-cell apoptosis, vasodilation and nitric oxide synthase inhibition. We hypothesized that IDO activity in sepsis would be related to plasma interferon-γ, interleukin-10, T cell lymphopenia and impairment of microvascular reactivity, a measure of endothelial nitric oxide bioavailability. In an observational cohort study of 80 sepsis patients (50 severe and 30 non-severe) and 40 hospital controls, we determined the relationship between IDO activity (plasma KT ratio) and selected plasma cytokines, sepsis severity, nitric oxide-dependent microvascular reactivity and lymphocyte subsets in sepsis. Plasma amino acids were measured by high performance liquid chromatography and microvascular reactivity by peripheral arterial tonometry. The plasma KT ratio was increased in sepsis (median 141 [IQR 64–235]) compared to controls (36 [28–52]); p<0.0001), and correlated with plasma interferon-γ and interleukin-10, and inversely with total lymphocyte count, CD8+ and CD4+ T-lymphocytes, systolic blood pressure and microvascular reactivity. In response to treatment of severe sepsis, the median KT ratio decreased from 162 [IQR 100–286] on day 0 to 89 [65–139] by day 7; p = 0.0006) and this decrease in KT ratio correlated with a decrease in the Sequential Organ Failure Assessment score (p<0.0001). IDO-mediated tryptophan catabolism is associated with dysregulated immune responses and impaired microvascular reactivity in sepsis and may link these two fundamental processes in sepsis pathophysiology
    corecore