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Multiple metabolisms constrain the anaerobic nitrite
budget in the Eastern Tropical South Pacific
Andrew R. Babbin1,2 , Brian D. Peters3 , Calvin W. Mordy4,5 , Brittany Widner6,
Karen L. Casciotti3 , and Bess B. Ward2

1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, 2Department of Geosciences, Princeton University, Princeton, New Jersey, USA, 3Department of Earth
System Science, Stanford University, Stanford, California, USA, 4Pacific Marine Environmental Laboratory, National Oceanic
and Atmospheric Administration, Seattle, Washington, USA, 5Joint Institute for the Study of the Atmosphere and Ocean,
University of Washington, Seattle, Washington, USA, 6Department of Ocean, Earth and Atmospheric Sciences, Old
Dominion University, Norfolk, Virginia, USA

Abstract The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the
global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the
best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer.
How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this
feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated
processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate
reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable
rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in
shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ
boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite
consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that
anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than
relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates
measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction
to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple
one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid
ammonium overconsumption.

1. Introduction

Nitrite is the central compound to many pathways in the marine nitrogen cycle—it is produced and con-
sumed during nitrification; it is an intermediate during nitrate assimilation by phytoplankton; it is the product
of dissimilatory nitrate reduction; and it is the substrate for anammox, denitrification, and dissimilatory nitrite
reduction to ammonium (DNRA). While ephemeral nitrite accumulation has been observed [Mordy et al.,
2010], nitrite occurs mostly in trace concentrations in the ocean, except at two depth horizons. (i) A primary
nitrite maximum (PNM) on the order of a hundred nanomolar occurs across the stratified ocean at the base of
the euphotic zone [Lomas and Lipschultz, 2006] and is thought to indicate an uncoupling of reduction steps
during the assimilation of nitrate or an imbalance between the two steps of nitrification [Olson, 1981a, 1981b;
Buchwald and Casciotti, 2013]. (ii) A much larger secondary nitrite maximum (SNM), which can reach levels as
high as 10μmol L�1, exists only within the anoxic regions of the world’s oxygen deficient zones (ODZs)
[Codispoti et al., 2001]. The origin of the SNM is not well understood, although it is observed in every ODZ.
The SNM arises from an imbalance among the biological processes producing and consuming nitrite.
Whether the nitrite in the SNM is rapidly generated or a historical remnant is unknown due to poorly con-
strained water residence time estimates, which range from a few months to a decade [Codispoti et al.,
2001; DeVries et al., 2012], here we attempt to characterize the origin and maintenance of SNMs.

The major ODZs of the Eastern Tropical Pacific and the Arabian Sea comprise less than 0.1% of the ocean’s
volume [Codispoti et al., 2001] but are responsible for approximately one third of marine fixed nitrogen loss
[Brandes and Devol, 2002; Gruber, 2004; Codispoti, 2007], making them crucially important to global biogeo-
chemistry and Earth’s climate [Ward, 2013]. The Eastern Tropical South Pacific (ETSP) region extending off
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the coasts of northern Chile and Peru is one such ODZ. This area is characterized by intense coastal upwelling
that drives one of the largest nearshore fisheries in the world [Cheung et al., 2010]. Beneath the highly pro-
ductive surface layer, oxygen very sharply decreases to concentrations below 10 nmol L�1, undetectable
by conventional methods [Revsbech et al., 2009]. Across this anoxic interval, which spans generally between
75m and 400m in depth, a strong SNM is consistently observed [Friederich and Codispoti, 1987; Thamdrup
et al., 2006; Lam et al., 2009; Casciotti et al., 2013]. The processes invoked to explain the SNM include an imbal-
ance in production by dissimilatory nitrate reduction (the first step in denitrification) and consumption by
anammox, DNRA, and the subsequent reduction steps in denitrification [Lam et al., 2009; Ward et al., 2009;
Lam and Kuypers, 2011].

Recently, another potential nitrite consumption term, anaerobic nitrite oxidation, has been suggested to be
significant in the ODZs on the basis of sparse rate measurements [Lipschultz et al., 1990; Füssel et al., 2011;
Beman et al., 2013; Peng et al., 2015, 2016], modeled rates [Lam et al., 2011], and natural abundance isotopic
measurements [Casciotti et al., 2013; Buchwald et al., 2015]. Furthermore, anaerobic nitrite oxidation has been
observed in culture experiments with Nitrobacter [Lees and Simpson, 1957; Bock et al., 1988] and implicated as
an electron donor for anoxygenic photosynthesis in a sewage sludge enrichment most likely associated with
the Thiocapsa genus [Griffin et al., 2007]. While photosynthesis may provide oxidative power at certain sites
where the oxycline is shallower than the 1% light level, the possible mechanisms supporting anaerobic nitrite
oxidation in the dark SNM environment are unknown. Potential alternative oxidants include iodate, a rela-
tively abundant and active compound in the global ocean with concentrations approximately 0.5μmol L�1

on average [Nozaki, 1997; Lam and Kuypers, 2011]. In the Arabian Sea ODZ, a region analogous to the ETSP,
there is evidence that reduction of iodate to iodide occurs within the anoxic depths, with up to
0.5μmol L�1 iodide accumulation [Farrenkopf and Luther, 2002]. While this signal may be caused by the
reductive versatility of denitrifying organisms whereby bacteria reduce nitrate and iodate as observed in mar-
ine Shewanella [Farrenkopf et al., 1997] and Pseudomonas [Amachi et al., 2007] cultures, the oxidative power of
iodate might also fuel nitrite oxidation.

In addition to alternative nitrite oxidants, another component of uncertain importance to the ODZ nitrogen
cycle is the supply of reduced nitrogen (i.e., ammonium and urea) to depth by vertically migrating zooplank-
ton. Numerous studies have documented significant zooplankton abundances in these coastal upwelling
zones [Wishner et al., 1998, 2008, 2013]. Further, these populations migrate daily, feeding at the surface at
night and spending the day at depth, often within the anoxic ODZ core [Steinberg et al., 2002; Bianchi
et al., 2013]. Recent modeling work has suggested that zooplankton excretion can influence nitrogen biogeo-
chemistry by augmenting anammox rates relative to denitrification [Bianchi et al., 2014].

The present study in the ETSP off the northern Chilean coast (Figure S1 in the supporting information) aims
(1) to provide a nitrite budget for the SNM and (2) to assess the net rate of nitrite accumulation by directly
measuring rates of the possible biological source (nitrate reduction) and sinks (anammox, denitrification,
DNRA, and nitrite oxidation) of nitrite in the anoxic layer. Fixed nitrogen loss at this site was investigated in
detail by conducting high-resolution sampling (interval of 4–8m in depth, 75 depths in total ranging from
the surface to the bottom of the ODZ at 400m) by using an in situ pump profiler (pump cast) of the anoxic
water column for N2 production incubations. Additional experiments amending site water with iodate, urea,
and cyanate were conducted to determine the potential for these compounds to support novel nitrite con-
sumption metabolisms within the ODZ.

2. Methods
2.1. Site Description and Sampling

Our study took place off the northern Chilean and Peruvian coasts (Figure S1) in July 2013 as part of an exten-
sive survey of the ETSP oxygen deficient zone aboard the RVIB Nathaniel B. Palmer. The site selected for an
intensive study with high depth resolution was located just off the shelf at 20.5°S 70.7°W and had a bottom
depth of 1600m. Two sampling methods were employed: water was collected from either a conductivity-
temperature-depth rosette with 12 L Niskin bottles (for nitrate reduction and nitrite oxidation experiments)
or from an in situ pumped profiler system (PPS) which was able to pump water from depths as deep as
400m directly onboard with minimal oxygen contamination [Canfield et al., 2010]. The PPS was operated
at a flow rate of 2 Lmin�1 and descended at a rate of 4mmin�1. The PPS was sampled on the downcast
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for high-resolution nutrients as well as for anammox and denitrification rate incubations. Oxygen profiles
were measured with a Seabird SBE45 electrode, with a nominal detection limit of 2μmol L�1. However, O2

concentration measurements were also made with a Switchable Trace Oxygen sensor such that the ODZ
was defined as the region with O2< 10 nmol L�1 [Revsbech et al., 2009; Tiano et al., 2014].

2.2. Nutrient Measurements

Nutrient samples were collected from the PPS for discrete NH4
+, NO2

�, NO3
�, and PO4

3� concentrations at a
resolution of ~8m.Nutrientsweremeasuredwithin hours of collection by using an autoanalyzerwith standard
photometric techniques [Strickland and Parsons, 1972;Grasshoff, 1983]. Separately, a linewas plumbeddirectly
from the continuous PPSflow to the autoanalyzer for near-continuousmonitoringofNO2

�. N* or themeasured
deficiency in fixednitrogen relative to phosphate froma standardN:P ratio of 16:1 [Gruber and Sarmiento, 1997;

Deutsch et al., 2001] was calculated by the relationship N� ¼ NO�
3

� �þ NO�
2

� �þ NHþ
4

� �� �� 16 PO3�
4

� �
. The

commonly used offset of 2.9μmol kg�1 to make the global average N* = 0 [Deutsch et al., 2001] was not
included because relative changes with depth are important for our study.

2.3. Instantaneous Rate 15N Tracer Experiments

Incubations for anammox and denitrification rates were conducted by plumbing the PPS seawater flow
directly into a continuously flushed N2 glove bag. At each sampling time point (every 1 or 2min, correspond-
ing to 4 or 8m in depth interval, respectively), two 12mL Exetainer vials (Labco, UK) were filled without tur-
bulence to the brim and capped without allowing a bubble by piercing the septa with a 23 gauge needle.
Upon finishing the collection (~2 h), helium was used to flush the vials for 5min and 4mL headspace was
introduced into the vials. The vials for anammox and denitrification were amended by using a gastight syr-
inge with a helium flushed tracer solution (final amendment concentrations were 3μmol L�1 15NO2

�

(Cambridge Isotope Laboratories, MA, USA) and 3μmol L�1 14NH4
+). Denitrification-only experiments were

amended with (15N)2O (Cambridge Isotope Laboratories, MA, USA) by using a gastight syringe to a final con-
centration of 50 nmol L�1. The vials were incubated in the dark at 10°C for 24 h, and biological activity was
stopped with 50μL 50% (w/v) ZnCl2. The limit of detection for denitrification was 2 nmol N2 L

�1 d�1 for the
(15N)2O experiments and between 1 and 14 nmol N2 L

�1 d�1 for the 15NO2
� experiments, depending on

the ambient nitrite concentration. Limits of detection for total nitrogen loss were 0.1 to
0.4 nmol N2 L

�1 d�1, depending on the nitrite concentration.

As only one vial was collected for each tracer, the rates were based on single endpoint determinations at 24 h,
with an assumption that, at the initial time point, the N2 present in the vials was unenriched in either 29N2 or
30N2. For these incubations, the N2 samples were measured on a Europa 20/20 gas chromatography/isotope
ratio mass spectrometer (GC/IRMS) as previously described [Babbin et al., 2014]. Headspace from the (15N)2O-
treated samples was first trapped in an in-line liquid N2 trap prior to injection in the GC to remove unreduced
N2O. Rates were calculated by assuming a linear production of labeled nitrogen gas over 24 h (as previous
work has shown to be a fair assumption in this region) [Dalsgaard et al., 2012]. The N2O substrate pool was
assumed to be 100% labeled because the in situ N2O was removed via helium purging before addition of
the tracer labeled gas.

Separately, experiments for nitrite oxidation and nitrate reduction were performed as previously [Babbin
et al., 2014], amending site water collected in Niskin bottles from 5 depths with 3μmol L�1 of either
15NO2

� or 15NO3
� for the nitrite oxidation or nitrate reduction incubations, respectively. A separate nitrite

oxidation experiment with an iodate amendment was also performed, with KIO3 added to a final concentra-
tion of 1μmol L�1 in addition to the nitrite tracer. Incubations were performed in 12mL Exetainer vials that
were flushed with helium for 5min to further minimize potential oxygen contamination arising from sam-
pling. The vials were incubated in the dark at 10°C, and triplicate vials were sacrificed every 12 h over a
48 h total incubation period by the addition of 50μL 50% (w/v) ZnCl2 solution. Because we were interested
in detecting an anaerobic transformation that is assumed to be obligately aerobic, and in light of the high
affinity of NO2

� oxidation for O2 [Bristow et al., 2016], extra precautions were taken to eliminate O2.
Seawater was sampled directly into ground glass O2 bottles and opened only inside an N2-filled glove bag.
Further, the Exetainer septa was degassed and stored in an anoxic headspace for weeks prior to use.
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Upon return to shore, nitrate reduction to nitrite time point samples were measured by converting the nitrite
pool to N2O with sodium azide [McIlvin and Altabet, 2005; Newell et al., 2011] and measuring directly on a
Finnigan Delta-V IRMS. Nitrite oxidation to nitrate experiments had excess labeled nitrite removed by using
the sulfamic acid method [Lipschultz et al., 1990; Granger and Sigman, 2009]. Aliquots (1mL) of samples were
treated with 10μL 5% sulfamic acid for 1 h before neutralization with NaOH. During this reaction, the samples
equilibrated with air such that any 15N2O produced by denitrifiers shipboard [Babbin et al., 2015] was
removed from the sample. The treated samples were then injected into denitrifier Pseudomonas chlororaphis
[Sigman et al., 2001] cultures, which converted the nitrate in solution to N2O. N2O was then measured on the
same mass spectrometer as the nitrate reduction experiments.

Rates of production of either 15NO2
� from the nitrate reduction or 15NO3

� from the nitrite oxidation experi-
ments were calculated by fitting the observed enrichments over time with a linear function and dividing by
the fraction of labeled substrate (50 ± 25% for nitrite and 14± 3% for nitrate). These tracer concentrations
may be potentially stimulating for the reaction rates measured, but given the nonlinear kinetics of enzymatic
pathways, this effect is difficult to parse. Nevertheless, the microbes must be present and active within the
incubations to detect any of the products measured. As opposed to single endpoint measurements, the time
course incubations for nitrite oxidation and nitrate reduction allowed us to avoid experimental artifacts that
assume an initial natural abundance isotopic composition. In so doing, we observed that the 15N-labeled
NO2

� stock is likely contaminated with 15NO3
�, with initial T0 vials enriched up to 1000‰. Additionally,

the sulfamic acid method is not 100% efficient in removing NO2
�, so that will contribute to this initial offset

[Granger and Sigman, 2009]. The change in enrichment of the product over time determines the rate, mean-
ing this initial offset does not affect the rate calculation, assuming each replicate began with the same nitrite
and nitrate concentrations and isotopic compositions. Moreover, any stochasticity in sulfamic acid efficiency
will be accounted for in the replicability among triplicates and the standard error of the slope fit through the
15 independent Exetainer measurements.

Cyanate (OC15N�) and urea (H2
15NCO15NH2) addition experiments utilized custom synthesized (Cambridge

Isotope Laboratories, MA, USA) 15N-labeled compounds. Amendments consisted of 3μmol L�1 of cyanate
or 1.5μmol L�1 of urea (3μmol L�1 of 15N). These concentrations are much higher than those that naturally
occur in the ocean but were chosen in order to standardize the amount of reduced nitrogen in the incuba-
tions. While the rates of utilization of these substrates may be potentially stimulated, detecting the oxidation
of these substrates would show that the reaction is indeed possible in the marine environment. Incubations
were performed and N2 production rates measured as in other experiments.

2.4. One-Dimensional Advection-Diffusion-Reaction Model

Aprognostic one-dimensionalmodel of the oxygen deficient zone between the upper oxycline (75m) and the
lower oxycline (400m) at 1m vertical resolution was used to determine how the measured in situ rates affect
nitrite and nitrate concentrations. The four measured rates of nitrite transformations were transformed to be
functions of depth (see section 3 for details). Anammoxanddenitrification rates from thepumpcastwere inter-
polated to a 1m resolution by using a simple linear interpolant between boundingmeasurements. A partition-
ing between the two N2 production pathways was assumed by using a linear interpolation between
measurements, with the fraction of anammox at depths shallower than 80m being set to the shallowest mea-
surement (80m) and at depths deeper than 375m to the deepest measurement (375m). Nitrate reduction
rates were fit to a power law scaling with depth, similar to organic matter consumption [Martin et al., 1987;
Newell et al., 2011; Babbin et al., 2014]. Nitrite oxidation rates were set by using a step function between mea-
surements, given the lack of additional constraints to determine a more robust relationship with depth.

Advection and diffusion constants were determined from the observed temperature and salinity distribu-
tions [Fennel and Boss, 2003] such that v=�2× 10�7m s�1 (upwelling) and D= 4× 10�5m2 s�1. We assumed
diffusivity to be constant with depth as per previous ODZ studies [Yamagishi et al., 2007; Babbin et al., 2015].
The full equations solved were

∂NO�
2

∂t
¼ D

∂2NO�
2

∂2z
þ v

∂NO�
2

∂z
þ ∑ Rnarz � Ramx

z � Rdntz � Rnxrz

� �

∂NO�
3

∂t
¼ D

∂2NO�
3

∂2z
þ v

∂NO�
3

∂z
þ ∑ Rnxrz � Rnarz

� �
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whereRiz is the rate of process i at depth z. The abbreviations for each process are nitrate reduction (nar), ana-
mmox (amx), denitrification (dnt), and nitrite oxidation (nxr). The model was stepped forward in time (time
step of 104 s) until the maximum modeled nitrite concentration equaled the measured, which occurred at
296 days. This model excluded horizontal advection, so the water mass modeled can be interpreted from a
Lagrangian reference frame. Boundary conditions at the top and bottom of the ODZ were set to match mea-
surements 0μmol L�1 NO2

� and NH4
+ at both boundaries and 23 and 36.4μmol L�1 NO3

� at the top and
bottom boundaries, respectively. Initial conditions for the model were zero nitrite and ammonium concentra-
tions throughout the water column and 22μmol L�1 nitrate deficit throughout the ODZ to match the obser-
vation at the base of the oxycline.

3. Results and Discussion
3.1. Water Column Physical and Biogeochemical Structure

The chemical structure of the water column (Figure 1) was consistent with previous reports for the ETSP ODZ
[Thamdrup et al., 2006; Hamersley et al., 2007; Lam et al., 2009; Ward et al., 2009; Chang et al., 2010]. A well-
mixed surface layer (upper ~25m) was evident from the nearly uniform water density and O2 concentrations.
Then, through a steep pycnocline (Figure S3), O2 concentrations decreased through the oxycline to undetect-
able (anoxic) levels by 75m. Oxygen remained undetectable until ~400m, where its concentration increased
again, although much more gradually than in the upper oxycline. Within this column of anoxic water was the
characteristic decrease in nitrate concentrations (Figure 1a) and secondary nitrite maximum (Figure 1b),
peaking at 8.5μmol L�1 at 150m. Ammonium concentrations were consistently below 80 nmol L�1 for all
of the anoxic depths sampled (Figure 1c). The dissolved inorganic nitrogen (DIN) deficit peaked at 100m
(Figure 1d), shallower than the local nitrate minimum and nitrite maximum.

3.2. Anammox and Denitrification Rate Measurements

N2 production from nitrite was detected throughout the depth interval where oxygen was below detection
limits (Figure 2a). All of this nitrogen loss appears to be due to anammox because the measurement of dual-
labeled N2 gas that indicates denitrification and DNRA were below the detection limit of 4 nmol N L�1 d�1 at
this station (Figure 2b). Separately measured N2O production rates from nitrite and nitrate reduction confirm
that denitrification rates range between 3.5 nmol L�1 d�1 at the top of the ODZ and 1 nmol L�1 d�1 at the
bottom [Ji et al., 2015]. While anammox has been reported as the sole N2 production process in the ETSP
in numerous other studies [Thamdrup et al., 2006; Lam et al., 2009; Ward et al., 2009], denitrification has

Figure 1. Nutrients measured from the pump cast. (a) Nitrate (circles) and dissolved oxygen (grey line), (b) nitrite, (c)
ammonium, and (d) negative N* indicating DIN consumption relative to phosphate. The horizontal red lines delineate
the upper and lower boundaries of the oxycline.
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also been observed in this region, albeit sporadically but at high rates [Dalsgaard et al., 2012; Kalvelage et al.,
2013], and a stoichiometrically balanced partitioning between the two modes of fixed nitrogen loss is more
likely [Babbin et al., 2014].

The method for partitioning nitrogen loss pre-
sented here and previously [Thamdrup et al.,
2006; Lam et al., 2009; Dalsgaard et al., 2012]
suffers from a high detection limit for conclu-
sively determining denitrification rates by the
appearance of dual-labeled 30N2 in our incuba-
tions. The overall rates are slow, and the high
in situ nitrite concentration background limits
the fraction of N2 generation that proceeds
into the 30N2 pool, factors which collude to
limit detectability. However, for a variety of
reasons, denitrification is likely to represent a
significant portion of the observed N2 produc-
tion in our experiments. From the multiple
independent lines of evidence presented
below, we conclude that an anammox-only
regime is unrealistic and proceed with our ana-
lysis without differentiating between the two
nitrogen loss pathways.

(i) Other measurements conducted at this site
with a higher sensitivity for denitrification
(supporting information) but at a lower verti-
cal resolution indicate that an average fraction
of anammox should be 47 ± 4% within the
core of the ODZ (Figure 3). Higher relative
amounts of anammox were observed in the

Figure 3. The contribution of anammox to N2 loss from additional
measurements at this station. Measurements of anammox
percentage from the coastal ETSP site are shown. The error bars
indicate propagated error from 15 N2 production measurements
parsed into anammox and denitrification [Babbin et al., 2014]. The
profile is a compilation of 12 separate depths (9 unique) sampled
over three different days. The vertical red line denotes the 47%
average anammox contribution observed below 100m depth.
Details are provided in the supporting information.

Figure 2. Measurements of nitrogen transformation. (a) Nitrogen loss rates from 15NO2
� tracer incubations. (b) 30N2

production relative to the mean signal where the anomaly, x̂ ¼ xi�x
sx

for 15NO2
� (o) and 46N2O (x) treatments, respec-

tively. (c) Nitrate reduction rates from bottle sampling. (d) Nitrite oxidation rates from bottle sampling. Nitrite oxidation
experiments without additional IO3

� are in black, while those with amendments are in blue. The error bars denote standard
errors in slope through15points (5 timepoints in triplicate). For all panels, thegreycurves showparameterizationswithdepth
used in our 1-D biogeochemical model. The horizontal red lines delineate the upper and lower boundaries of the oxycline.
Samples fornitrate reductionandnitriteoxidation(Figures2and2d)are fromadifferentdaywhere internalphysicaldynamics
shifted the water column structure slightly, which is why the oxycline is slightly different from that of the pump cast.
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upper and lower ODZs, possibly due
to low but significant O2 concentra-
tions (10s to 100 s nmol L�1)
[Dalsgaard et al., 2014]. The represen-
tative profile shown was from the
same station as the pump cast, but
data from across the ETSP cruise indi-
cate the same trend with similar
anammox fractions.

(ii) A role for denitrification is further
corroborated by simultaneously mea-
sured nutrients and natural abun-
dance isotope measurements from
the pump cast, which predict contri-
butions from both anammox and
denitrification for this ODZ [Peters
et al., 2016].

(iii) A third piece of evidence that pro-
cesses (i.e., denitrification) in addition
to what anammox contributes to the
production of N2 is observed when
modeling our measured N2 produc-
tion rates, assuming that all of the

N2 produced is from only anammox: in this model setup, ammonium is greatly and unrealistically over con-
sumed (Figure S2), as further described in section 4.

In the high-resolution pump cast, nitrogen loss rates increased substantially once O2 disappeared at ~75m,
were maximal near the top of the ODZ (~100m), and decreased with depth. Interestingly, the potential for
low rates of anammox just below the PNM in the oxycline (~50m) is apparent from these measurements
(Figure 2a), as previously observed for this region [De Brabandere et al., 2014]. Because O2 concentrations
were reduced below ambient levels by the methodological protocols in the surface-most incubations, how-
ever, whether the anammox and denitrifying bacteria were active at higher ambient O2 conditions cannot be
definitively assessed. Still, active rates of nitrogen loss are potentially responsible for some of the nitrite and
ammonium consumptions seen below the concentration peaks of nitrite and ammonium in the surface
ocean (Figure 1).

Nitrogen loss rates correlated significantly with the integrated nitrogen deficit (N*), which is an independent
geochemical measurement of fixed nitrogen loss (p≪ 0.001; Figure 4). The inverse of the best fit slope (black
line), (8 ± 1 year)�1, should indicate the residence time of water in the ODZ, assuming that the measured
nitrogen consumption rates give rise to the nitrogen deficit. This residence time is consistent with indepen-
dent chlorofluorocarbon measurements (specific tracer for residence time) from the region, which suggest a
residence time of 5–30 years [Deutsch et al., 2001]. Moreover, there is additional structure observable, given
the frequency of measurement with respect to depth. Adjacent samples, spaced ~4m apart, show a different
slope (Figure 4, grey contours) not significantly different from our modeled 296 day turnover time suggested
for the nitrite turnover in the core of the ODZ (see section 4).

3.3. Nitrate Reduction and Nitrite Reoxidation Rate Measurements

Measurements of nitrate reduction to nitrite and nitrite reoxidation to nitrate were conducted at five selected
depths corresponding to the top and bottom of the ODZ and at three intermediate depths within the ODZ
(Figures 2c and 2d). The highest rates of both processes occurred at the top of the ODZ. The nitrate reduction
rate decreasedmonotonically, from 120 ± 20 nmol L�1 d�1 at the top of the ODZ to 11± 3 nmol L�1 d�1 at the
bottom. This profile appears to approximate a “Martin”-style power law dependence on organic matter sup-
ply [Martin et al., 1987] as was observed for fixed nitrogen loss rates in the analogous ETNP [Babbin et al.,
2014]. Moreover, organic carbon-dependence has been discussed previously in the ETSP as being both the

Figure 4. Relationship between nitrogen loss rates and fixed nitrogen deficit
(N*). Depths are indicated by color, and the dashed black lines indicate the
best fit regression slope through all data, RN loss ¼ N�

8 years. The solid grey
contours indicate the slope expected if the measured nitrogen loss rates
were to generate the observed nitrogen deficits in 296 days, from different
starting points on the N* axis.
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limiting factor for nitrogen loss [Ward et al., 2008] and the control of the entirety of anaerobic biogeochem-
istry [Kalvelage et al., 2013]. Since nitrate concentration is not drawn down below 10μmol L�1 within the
ODZ, another factor such as organic carbon rain must limit the production of nitrite here.

Fitting a power law function through the nitrate reduction data (Figure 2c), the resulting best fit equation for
reduction rate R as a function of depth z, with Rtop and ztop corresponding to the upper ODZ boundary, is

R zð Þ ¼ Rtop
z

ztop

� ��1:23
p < 0:01ð Þ :

The power coefficient, �1.23 is similar to that derived in the ETNP for denitrification rates as dependent on
organic matter fluxes (�1.3) [Babbin et al., 2014] and reduced as expected compared to observations of
organic matter remineralization in oxic waters [Martin et al., 1987; Van Mooy et al., 2002; Hartnett and
Devol, 2003].

Nitrite reoxidation to nitrate also occurred at significant levels within the ODZ but was apparently most
important at the upper and lower boundaries, where rates were 27 ± 6 nmol L�1 d�1 and
18± 5 nmol L�1 d�1, respectively. Within the core of the ODZ, however, nitrite oxidation was minimal,
6 ± 1 nmol L�1 d�1 at themaximum nitrite concentration, and undetectable at the two other depths sampled.
This observation from direct rate measurements corroborates many of the ideas put forward by Casciotti et al.
[2013], who calculated that nitrite oxidation should be the major sink term of nitrite in the lower ODZ off of
Peru and that nitrate reduction was larger than nitrite oxidation at the top of the ODZ. The absence of signifi-
cant nitrite oxidation in the core of the ODZ is also corroborated by natural abundance isotope data collected
simultaneously [Peters et al., 2016]. Given the measured rates of anammox (<10 nmol N2 L

�1 d�1) and the
stoichiometry of nitrite oxidation by anammox (NO2

� oxidation = 0.3 ×N2 production) [Strous et al., 1998],
anammox can be responsible for only a small fraction of the observed nitrite oxidation rates. These nitrite oxi-
dation rates relative to nitrate reduction and nitrate resupply by physical processes maintain the nitrate con-
centrations observed in the ODZs.

3.4. Iodate as a Potential Oxidant for Nitrite

The addition of iodate increased the rates of nitrite oxidation, at least in samples from depths at which nitrite
oxidation was detected in the control experiments (i.e., no amendments) (Figure 2d). In these experiments,
iodate increased nitrite oxidation rates by 30 ± 20 nmol L�1 d�1 for the two shallowest depths. At the base
of the ODZ, however, the rate increased with the addition of iodate by only 7 ± 7 nmol L�1 d�1. There, the
low in situ nitrite standing stock (0.3μmol L�1) and low nitrate reduction rates generating autochthonous
nitrite are conceivably the limiting factors of reoxidation. Interestingly, at 250 and 350m where no nitrite oxi-
dation was detected in the control experiments, the addition of iodate did not stimulate any nitrite oxidation,
suggesting that either the bacteria responsible for this coupling are not abundant within the core of the ODZ
or that iodate alone did not induce a change in activity within the time frame of the experiments.

These results show that iodate-driven nitrite oxidation may be significant in the ODZ nitrite budget. In the
ODZ of the Arabian Sea, iodide concentrations were observed to increase by up to 500 nmol L�1 between
the oxygenated surface and anoxic core and comprise the entirety of the dissolved iodine pool within the
ODZ [Farrenkopf and Luther, 2002]. A simple redox balance for the oxidation of nitrite by iodate results in a
possible pathway of

3 NO�
2 þ IO�

3→3NO�
3 þ I� :

This reaction is energetically favorable and yields ~50 kJmol�1 of nitrite oxidized [Garrels and Christ, 1965;
Lam and Kuypers, 2011]. As each iodate molecule can oxidize three nitrite molecules, the 500 nmol L�1 iodide
accumulation can correspond to 1.5μmol L�1 of nitrite consumption. Thus, the maximum nitrite concentra-
tion measured [Farrenkopf and Luther, 2002] in the Arabian Sea of 4.5μmol L�1 might have been 33% larger
without this process. As similar 500 nmol L�1 iodate concentrations occur in the oxygenated Pacific [Nozaki,
1997], the same potential seems likely to exist for the ETSP ODZ.

We note that another possible source of apparent anaerobic NO2
� oxidation results from the reversibility of

the nitrite oxidoreductase enzyme by which aerobic nitrifiers living at the ODZ boundary are ephemerally
stressed by the lack of O2 [Kemeny et al., 2016]. However, given the consistency of the O2 and NO2

�
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concentration profiles, this explana-
tion suggested by natural abundance
isotope data for light-stressed nitri-
fiers in the high-O2 Southern Ocean
surface requires more investigation
within ODZs. The stimulation by
iodate here shows that iodate can
play a role regardless of other com-
plementary pathways by which
NO2

�may be oxidized in the absence
of O2.

3.5. Urea and Cyanate as Reduced
Nitrogen Sources

It has been suggested that migrating
zooplankton can increase anammox
rates independently from denitrifica-
tion by directly supplying an
allochthonous source of ammonium
independent from organic carbon
[Bianchi et al., 2014]. Urea, another
significant excretion product of zoo-
plankton and of larger migrating ani-
mals, may also augment nitrogen loss
rates via anammox either through

direct utilization or by the conversion of urea to ammonium and cyanate by other microbial clades or abio-
tically [Kamennaya et al., 2008]. The productive upwelling zones of the eastern tropical Pacific, and particu-
larly, the coastal ETSP studied here, are home to many cetaceans (both whales and dolphins). These
mammals, which migrate frequently to depths between 80 and 150m when foraging [Williams et al., 2000;
Croll et al., 2001], in addition to zooplankton whose effect has been previously examined, may act as a direct
injection source of urea to the top of the ODZ. Further, cyanate can form in seawater by many mechanisms
related to primary productivity and organic matter degradation, including the decay of urea [Kamennaya
et al., 2008]. When urea decomposes, it is cleaved into one molecule each of ammonium and cyanate. We
directly measured the response of N2 production (presumably anammox; see below) rates to urea and cya-
nate at the base of the oxycline and at the depth of the SNM by using 15N-labeled species of each of these
substrates (Figure 5).

We found that cyanate could support significant anammox rates, especially at the base of the oxycline, where
rates of cyanate oxidation to N2 (3.4 ± 0.3 nmol L�1 d�1) were comparable to those detected directly by
labeled ammonium (4.1 ± 0.8 nmol L�1 d�1). At the SNM, cyanate was still able to support anammox, albeit
at reduced rates (1.5 ± 0.1 nmol L�1 d�1) compared with ammonium (3.9 ± 0.3 nmol L�1 d�1). Urea supported
low N2 production rates of 0.3 ± 0.1 and 0.4 ± 0.1 nmol L�1 d�1 for the oxycline and SNM samples, respec-
tively. However, at the depth of the oxycline, an incubation artifact was observed, whereby urea supported
N2 production of 2.3 ± 0.5 nmol L�1 d�1 after a lag of 1.5 days. This stimulation, but only after 36 h, is indica-
tive of a commonly observed bottle effect captured in incubations that isolate microbes from their full envir-
onment [Holtappels et al., 2011].

We interpret these results as suggesting that cyanate can indeed be used as a source of reduced nitrogen for
anammox, especially at the shallower depth where cyanate and urea productions are likely rapid due to sink-
ing organic matter degradation [Cho and Azam, 1995;Widner et al., 2016] and injections of urea from animals
are more frequent. Although cyanate supported anammox rates immediately, anammox bacteria may not be
directly responsible for this conversion because the full in situ microbial community is captured in the incu-
bations. These results also show that urea cannot be used directly, but that presumably upon breakdown to
ammonium and cyanate by urease produced by other organisms or some other biological or abiotic process,
the substrate can be harnessed for N2 generation. While the concentrations provided in the incubations are

Figure 5. Rates of N2 production from urea and its decay products. (a)
Bottom of the oxycline, (b) depth of the SNM. Rates from ammonium (cir-
cles), cyanate (triangles), and urea (squares) are shown. The error bars denote
standard deviations among triplicate time points, and the points without
visible bars indicate that the error is smaller than the symbol.
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greater than background and the measured rates were likely saturated, the in situ microorganisms appear to
be primed to harness cyanate but not urea for N2 production. Our results are supported by the transcriptome
of the marine anammox bacterium Candidatus Scalindua profunda in which a putative cyanate hydratase was
found to be highly expressed [van de Vossenberg et al., 2013] but in which urease was not found. Scalindua is
the only genus of anammox bacteria detected in ODZs on the basis of 16S rRNA identity [Woebken et al., 2008;
Jayakumar et al., 2009]. As the cyanate hydratase enzyme converts cyanate to ammonium, it seems plausible
that anammox bacteria containing this gene could access this pool as an indirect source of ammonium. Basic
Local Alignment Search Tool (BLAST) searches [Altschul et al., 1990, 1997] of metagenomic and
metatranscriptomic data from the ETSP [Stewart et al., 2011] also revealed sequences with similarity to
putative cyanate hydratases (as determined by identity to Pfam entry PF02560; E value< 10�5) from the
Scalindua genome [van de Vossenberg et al., 2013] and from Nitrospina, a genus of nitrite-oxidizing bacteria
widely found in anoxic marine settings [Fuchsman et al., 2011; Füssel et al., 2011] that is genetically similar
[Lücker et al., 2013] to another nitrite oxidizer that has been recently shown to convert cyanate to
ammonium [Palatinszky et al., 2015]. We found potential cyanate hydratase sequences in the Stewart et al.
[2011] ETSP metagenomes from all sampled depths above and within the ODZ (but not below). However,
active expression indicated by hits to the metatranscriptome was only detected from the anoxic depths.
Metatranscriptome hits also matched sequences from both Scalindua and Nitrospina. A complete table of
BLAST hits is included in Table S1 in the supporting information.

4. Modeling of the Secondary Nitrite Maximum

From the observed depth dependencies of the five nitrite-affecting processes measured, parameterizations
were developed to describe these rates in a one-dimensional model (Figure 2, grey lines). We used the
observed power scaling best fit to our data to define the decrease of nitrate reduction rates with depth,
set DNRA to zero throughout the water column, and linearly interpolated the measured nitrogen loss rates
(Figure 2a) and partitioning (Figure 3) to 1m resolution. We acknowledge that the partitioning between ana-
mmox and denitrification affects the model, but this distribution gives only slightly different results com-
pared with allowing approximately equal rates of N2 production by anammox and denitrification. Due to
the unknown mechanism by which nitrite was oxidized to nitrate, however, we modeled its contribution
to the nitrite budget conservatively with a stepwise function, dependent only upon the observed nitrite oxi-
dation rate distribution.

Combining the effects of these biological rates together with vertical diffusion and advection, the model
shows the chemical evolution of a parcel of water starting with no nitrite and a uniform nitrate deficit.
The imbalance between the measured production of nitrite from nitrate reduction and its consumption
via reoxidation and reduction by denitrification and anammox gives rise to a large secondary nitrite
maximum (Figure 6a). The magnitude of the SNM keeps increasing with time, however, due to the

Figure 6. Modeled biogeochemical parameters within the anoxic layer (75–400m). (a) Nitrite, (b) nitrate, and (c) ammo-
nium. The circles denote measured concentrations during the pump cast, while the grey curves are the modeled distri-
butions after 296 days of model integration.
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fact that the rates of the processes are not perfectly balanced at every depth. If these measured biolo-
gical rates are assumed to be representative averages over time within the ODZ, then horizontal trans-
port (which is ignored in the model) may be crucial to constraining the nitrite maximum. Nonetheless,
the relative sizes of the modeled nitrate deficit (Figure 6b; up to 20μmol L�1) and corresponding nitrite
accumulation (peak of 8.5μmol L�1) after 296 days of integration compare well to the observations, sug-
gesting that these measured biological rates are reasonable in magnitude. The 296 days it takes to repro-
duce the nitrite maximum may in fact approximate the residence time of the water at this coastal site
and is similar to that determined by DeVries et al. [2012] for the ETSP suboxic waters of 330 ± 150 days.
ODZ residence time is, however, one of the most poorly constrained oceanographic parameters and is
certainly dependent on the exact location within the ODZ.

Offsets between the modeled and measured nitrate and nitrite concentrations can be explained
through differential lateral ventilation supplying different depth layers at slightly different rates (SI)
and are supported by the physical structure of the water column (Figure S3). Of greater biogeochem-
ical interest, however, is that the five rates as measured cause ammonium to be overconsumed in the
lower ODZ and therefore require additional ammonium supply within the anoxic water column
(Figure 6c).

Assuming a variable anammox contribution to nitrogen loss averaging ~50%, as evidenced by natural abun-
dance nitrogen isotope data collected simultaneously [Peters et al., 2016] and other tracer incubations at the
same station (Figure 3), the 1-D model better reproduces the observed ammonium profile than if nitrogen
loss is attributed to anammox alone (Figure S2), reducing the net average deficit across the ODZ by a factor
of 10, from 0.85μmol L�1 to 0.09μmol L�1. Still, not enough ammonium is generated in the lower ODZ. This is
actually consistent with the possible role of additional reduced nitrogen sources to the lower ODZ, either
through the direct excretion of ammonium [Bianchi et al., 2014] or by the conversion of urea to ammonium
and cyanate.

5. Anaerobic Nitrogen Cycle of the ETSP

The rate measurements presented here give a number of insights into the biogeochemical parameters
controlling their distributions. These measurements provide reasonable first-order constraints on the
development of the secondary nitrite maximum in the ETSP. Most of the inorganic nitrogen is rapidly
recycled between nitrate and nitrite by coincident nitrate reduction and nitrite oxidation rates in the
ODZ boundaries, and only a small portion of the nitrite is reduced by anammox and denitrification.
Linking the high-resolution rate profile to passive chemical tracers leads to the following scenario of
nitrite cycling in the ETSP:

1. Organic matter remineralization by nitrate reduction to nitrite with a standard power law distribution sup-
plies nitrite for the other (nitrite-consuming) microbial processes.

2. Rates of nitrite reduction, namely, through anammox and denitrification, occur in ratios dictated by
ammonium released by ammonification, with an additional source potentially required, either through
low levels of autochthonous DNRA [Lam et al., 2009] or a possible allochthonous source from migrating
animals [Bianchi et al., 2014] or advection offshore [Kalvelage et al., 2013].

3. Anaerobic nitrite oxidation occurs at significant rates near the ODZ boundaries, where iodate can be a
potential oxidant. However, iodate concentrations are likely to support a fraction of the entire process.
Two other noteworthy oxidants that have been explored in ODZs, iron and manganese, are also insuffi-
cient to support the observed rates [Glass et al., 2015; Kondo and Moffett, 2015]. Nitrite oxidoreductase
reversibility may also play a role [Kemeny et al., 2016].

4. Cycling between nitrate reduction and nitrite reoxidation at the boundaries supplies ammonium to sup-
port greater rates of anammox relative to denitrification. The increased contribution of anammox at the
boundaries may potentially arise due to very low O2 concentrations having a differential inhibitory effect
on the two N2 production pathways [Dalsgaard et al., 2014].

5. The ETSP nitrite maximum is produced and actively maintained by an imbalance among the microbial
rates of nitrate reduction, anammox, anaerobic nitrite oxidation, and physics; however, the ultimate rea-
son for this imbalance, either a kinetic or thermodynamic control to maximize energy yield, remains to be
elucidated.
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