23 research outputs found

    Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations

    Get PDF
    Vertebral Fracture Analysis enables the detection of vertebral fractures in the same session as bone mineral density testing. Using this method in 2,424 patients, we found unknown vertebral fractures in approximately one out of each six patients with significant impact on management. The presence of osteoporotic vertebral fractures (VF) is an important risk factor for all future fractures independent of BMD. Yet, determination of the VF status has not become standard practice. Vertebral Fracture Assessment (VFA) is a new feature available on modern densitometers. In this study we aimed to determine the prevalence of VF using VFA in all patients referred for BMD testing in a university medical center and to evaluate its added clinical value. Prospective diagnostic evaluation study in 2,500 consecutive patients referred for BMD. Patients underwent VFA in supine position after BMD testing. Questionnaires were used to assess perceived added value of VFA. In 2,424 patients (1,573 women), results were evaluable. In 541 patients (22%), VFA detected a prevalent VF that was unknown in 69%. In women, the prevalence was 20% versus 27% found in men (p <0.0001). The prevalence of VF was 14% in patients with normal BMD (97/678), increased to 21% (229/1,100) in osteopenia and to 26% in those with osteoporosis (215/646) by WHO criteria. After excluding mild fractures VF prevalence was 13% (322/2,424). In 468 of 942 questionnaires (50% response rate), 27% of the referring physicians reported VFA results to impact on patient management. VFA is a patient friendly new tool with a high diagnostic yield, as it detected unknown VF in one out of each six patients, with significant impact on management. We believe these findings justify considering VFA in all new patients referred for osteoporosis assessment in similar populations

    Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    Get PDF
    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health

    Feeding behaviour of broiler chickens: a review on the biomechanical characteristics

    Full text link

    Distributed fusion in sensor networks: a graphical models perspective

    No full text
    This paper presents an overview of research conducted to bridge the rich field of graphical models with the emerging field of data fusion for sensor networks. Both theoretical issues and prototyping applications are discussed in addition to suggesting new lines of reasoning

    Description of Babesia duncani n.sp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms

    No full text
    The morphologic, ultrastructural and genotypic characteristics of Babesia duncani n.sp. are described based on the characterization of two isolates (WA1, CA5) obtained from infected human patients in Washington and California. The intraerythrocytic stages of the parasite are morphologically indistinguishable from Babesia microti, which is the most commonly identified cause of human babesiosis in the USA. Intraerythrocytic trophozoites of B. duncani n.sp. are round to oval, with some piriform, ring and ameboid forms. Division occurs by intraerythrocytic schizogony, which results in the formation of merozoites in tetrads (syn. Maltese cross or quadruplet forms). The ultrastructural features of trophozoites and merozoites are similar to those described for B. microti and Theileria spp. However, intralymphocytic schizont stages characteristic of Theileria spp. have not been observed in infected humans. In phylogenetic analyses based on sequence data for the complete18S ribosomal RNA gene, B. duncani n.sp. lies in a distinct clade that includes isolates from humans, dogs and wildlife in the western United States but separate from Babesia sensu stricto, Theileria spp. and B. microti. ITS2 sequence analysis of the B. duncani n.sp. isolates (WA1, CA5) show that they are phylogenetically indistinguishable from each other and from two other human B. duncani-type parasites (CA6, WA2 clone1) but distinct from other Babesia and Theileria species sequenced. This analysis provides robust molecular support that the B. duncani n.sp. isolates are monophyletic and the same species. The morphologic characteristics together with the phylogenetic analysis of two genetic loci support the assertion that B. duncani n.sp. is a distinct species from other known Babesia spp. for which morphologic and sequence information are available

    Mycobacterium tuberculosis Growth at the Cavity Surface: a Microenvironment with Failed Immunity

    No full text
    Protective immunity against pulmonary tuberculosis (TB) is characterized by the formation in the lungs of granulomas consisting of macrophages and activated T cells producing tumor necrosis factor alpha and gamma interferon, both required for the activation of the phagocytes. In 90% of immunocompetent humans, this response controls the infection. To understand why immunity fails in the other 10%, we studied the lungs of six patients who underwent surgery for incurable TB. Histologic examination of different lung lesions revealed heterogeneous morphology and distribution of acid-fast bacilli; only at the surface of cavities, i.e., in granulomas with a patent connection to the airways, were there numerous bacilli. The mutation profile of the isolates suggested that a single founder strain of Mycobacterium tuberculosis may undergo genetic changes during treatment, leading to acquisition of additional drug resistance independently in discrete physical locales. Additional drug resistance was preferentially observed at the cavity surface. Cytokine gene expression revealed that failure to control the bacilli was not associated with a generalized suppression of cellular immunity, since cytokine mRNA was up regulated in all lesions tested. Rather, a selective absence of CD4(+) and CD8(+) T cells was noted at the luminal surface of the cavity, preventing direct T-cell-macrophage interactions at this site, probably allowing luminal phagocytes to remain permissive for bacillary growth. In contrast, in the perinecrotic zone of the granulomas, the two cell types colocalized and bacillary numbers were substantially lower, suggesting that in this microenvironment an efficient bacteriostatic or bactericidal phagocyte population was generated
    corecore