143 research outputs found

    Monocyte chemoattractant protein-1 serum levels in ovarian cancer patients

    Get PDF
    The chemokine monocyte chemoattractant protein (MCP)-1 is an important mediator of monocyte infiltration in various solid tumours of epithelial origin. The aim of the present study was to evaluate the role of MCP-1 in the natural history of ovarian cancer and to determine its value as differentiation marker and prognostic marker regarding disease free and overall survival. This retrospective study comprises 86 patients with ovarian cancer, 48 with primary ovarian cancer and 38 with recurrent ovarian cancer, 67 patients with benign ovarian cysts and 42 healthy women. Median serum levels in patients with primary ovarian cancer, recurrent ovarian cancer, benign ovarian cysts and in healthy women were 535.6 (range 129.6–1200) pg ml–1, 427.3 (range 193.4–1101) pg ml–1, 371.2 (range 222–986.8) pg ml–1 and 318.7 (range 241.3–681.4) pg ml–1 respectively (Mann–Whitney U-test, P < 0.001). Univariate logistic regression models revealed a significant influence of MCP-1 serum levels on the odds of presenting with primary ovarian cancer versus benign cysts and versus healthy women respectively (univariate logistic regression, P < 0.001 and P < 0.001 respectively). In a multivariate logistic regression model considering MCP-1 and CA 125 serum levels simultaneously, both MCP-1 and CA 125 revealed statistical significance on the odds of presenting with primary ovarian cancer versus benign cysts (multivariate logistic regression, P = 0.05 and P < 0.001 respectively). In ovarian cancer patients, MCP-1 serum levels showed a statistically significant correlation with histological grade (Mann–Whitney U-test, P = 0.02) and age at the time of diagnosis (Mann–Whitney U-test, P = 0.03). Elevated MCP-1 serum levels prior to therapy were not associated with disease-free and overall survival (log-rank test, P = 0.2 and P = 0.7 respectively). In summary these data indicate that MCP-1 might play a functional role in the natural history of ovarian cancer and might serve as differentiation marker between benign ovarian cysts and ovarian cancer, providing additional information to the established tumour marker CA 125. © 1999 Cancer Research Campaig

    Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1ÎČ with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1ÎČ were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course.</p> <p>Methods</p> <p>The expression of CCL2, CCL5, TNFα and IL-1ÎČ was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma <it>In Situ </it>(DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments.</p> <p>Results</p> <p>CCL2, CCL5, TNFα and IL-1ÎČ were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1ÎČ in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1ÎČ expression. These results suggest progression-related roles for TNFα and IL-1ÎČ in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1ÎČ compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1ÎČ) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1ÎČ acts jointly with other pro-malignancy factors to promote disease relapse.</p> <p>Conclusions</p> <p>Our findings suggest that the coordinated expression of CCL2 & CCL5 and TNFα & IL-1ÎČ may be important for disease course, and that TNFα & IL-1ÎČ may promote disease relapse. Further <it>in vitro </it>and <it>in vivo </it>studies are needed for determination of the joint powers of the four factors in breast cancer, as well as analyses of their combined targeting in breast cancer.</p

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    Analysis of carbon soil content by using tagged neutron activation

    No full text
    Here we describe a prototype for non-destructive, in-situ, accurate and cost-effectively measurement procedure of carbon in soil based on neutron activation analysis using 14 MeV tagged neutron beam. This technology can be used for carbon baseline assessment on regional scale and for monitoring of its surface and depth storage due to the changes in agricultural practices undertaken in order to mitigate global climate change. © 2012 SPIE

    Analysis of carbon soil content by using tagged neutron activation

    No full text
    Here we describe a prototype for non-destructive, in-situ, accurate and cost-effectively measurement procedure of carbon in soil based on neutron activation analysis using 14 MeV tagged neutron beam. This technology can be used for carbon baseline assessment on regional scale and for monitoring of its surface and depth storage due to the changes in agricultural practices undertaken in order to mitigate global climate change. © 2012 SPIE

    Red mud characterization using atomic and nuclear analytical techniques

    No full text
    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including Rare Earths Elements (REEs), it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is evaluation of the red mud elemental composition, especially yttrium, scandium, gallium and REEs, from an ex-aluminum plant in Obrovac, Croatia, left from the processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and stored in open concrete basins for more than 30 years since then. © 2012 IEEE

    Red mud characterization using nuclear analytical techniques

    No full text
    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including REE, it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is the red mud from an ex-aluminum plant in Obrovac, Croatia, left from processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and since than stored in open concrete basins for more than 30 years. We have used energy dispersive x-ray fluorescence analysis (both tube and radioactive source excitation), fast neutron activation analysis and passive gamma spectrometry to identify a number of elements present in the red mud, their concentration levels and radioactivity in the red mud. The high concentrations of Al, Si, Ca, Ti and Fe have been measured. Chemical elements Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Br, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Pb, Th and U were found in lower concentrations. No significant levels of radioactivity have been measured. © 2011 IEEE

    Red mud characterization using atomic and nuclear analytical techniques

    No full text
    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including Rare Earths Elements (REEs), it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is evaluation of the red mud elemental composition, especially yttrium, scandium, gallium and REEs, from an ex-aluminum plant in Obrovac, Croatia, left from the processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and stored in open concrete basins for more than 30 years since then. © 2012 IEEE
    • 

    corecore