4,962 research outputs found

    Non-resonant inelastic x-ray scattering involving excitonic excitations

    Full text link
    In a recent publication Larson \textit{et al.} reported remarkably clear dd-dd excitations for NiO and CoO measured with x-ray energies well below the transition metal KK edge. In this letter we demonstrate that we can obtain an accurate quantitative description based on a local many body approach. We find that the magnitude of q\vec{q} can be tuned for maximum sensitivity for dipole, quadrupole, etc. excitations. We also find that the direction of q\vec{q} with respect to the crystal axes can be used as an equivalent to polarization similar to electron energy loss spectroscopy, allowing for a determination of the local symmetry of the initial and final state based on selection rules. This method is more generally applicable and combined with the high resolution available, could be a powerful tool for the study of local distortions and symmetries in transition metal compounds including also buried interfaces

    On confined fractional charges: a simple model

    Full text link
    We address the question whether features known from quantum chromodynamics (QCD) can possibly also show up in solid-state physics. It is shown that spinless fermions of charge ee on a checkerboard lattice with nearest-neighbor repulsion provide for a simple model of confined fractional charges. After defining a proper vacuum the system supports excitations with charges ±e/2\pm e/2 attached to the ends of strings. There is a constant confining force acting between the fractional charges. It results from a reduction of vacuum fluctuations and a polarization of the vacuum in the vicinity of the connecting strings.Comment: 5 pages, 3 figure

    Inter-Intra Molecular Dynamics as an Iterated Function System

    Full text link
    The dynamics of units (molecules) with slowly relaxing internal states is studied as an iterated function system (IFS) for the situation common in e.g. biological systems where these units are subjected to frequent collisional interactions. It is found that an increase in the collision frequency leads to successive discrete states that can be analyzed as partial steps to form a Cantor set. By considering the interactions among the units, a self-consistent IFS is derived, which leads to the formation and stabilization of multiple such discrete states. The relevance of the results to dynamical multiple states in biomolecules in crowded conditions is discussed.Comment: 7 pages, 7 figures. submitted to Europhysics Letter

    Hypothesis testing for an entangled state produced by spontaneous parametric down conversion

    Full text link
    Generation and characterization of entanglement are crucial tasks in quantum information processing. A hypothesis testing scheme for entanglement has been formulated. Three designs were proposed to test the entangled photon states created by the spontaneous parametric down conversion. The time allocations between the measurement vectors were designed to consider the anisotropic deviation of the generated photon states from the maximally entangled states. The designs were evaluated in terms of the p-value based on the observed data. It has been experimentally demonstrated that the optimal time allocation between the coincidence and anti-coincidence measurement vectors improves the entanglement test. A further improvement is also experimentally demonstrated by optimizing the time allocation between the anti-coincidence vectors. Analysis on the data obtained in the experiment verified the advantage of the entanglement test designed by the optimal time allocation.Comment: 7 figures, 9 pages. This paper is revised for increasing the readership for experimentalists. Hence, the mathematical part is moved to a new manuscript quant-ph/060802

    Spectral signatures of the Luttinger liquid to charge-density-wave transition

    Full text link
    Electron- and phonon spectral functions of the one-dimensional, spinless-fermion Holstein model at half filling are calculated in the four distinct regimes of the phase diagram, corresponding to an attractive or repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or polaronic insulator at strong coupling. The results obtained by means of kernel polynomial and systematic cluster approaches reveal substantially different physics in these regimes and further indicate that the size of the phonon frequency significantly affects the nature of the quantum Peierls phase transition.Comment: 5 pages, 4 figures; final version, accepted for publication in Physical Review

    Bipolarons in the Extended Holstein Hubbard Model

    Full text link
    We numerically and analytically calculate the properties of the bipolaron in an extended Hubbard Holstein model, which has a longer range electron-phonon coupling like the Fr\" ohlich model. In the strong coupling regime, the effective mass of the bipolaron in the extended model is much smaller than the Holstein bipolaron mass. In contrast to the Holstein bipolaron, the bipolaron in the extended model has a lower binding energy and remains bound with substantial binding energy even in the large-U limit. In comparison with the Holstein model where only a singlet bipolaron is bound, in the extended Holstein model a triplet bipolaron can also form a bound state. We discuss the possibility of phase separation in the case of finite electron doping.Comment: 5 pages, 3 figure

    Direct observation of t2g orbital ordering in magnetite

    Full text link
    Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation.Comment: to appear in Phys. Rev. Let

    Flux flow resistivity in the two-gap superconductivity

    Full text link
    We investigate the flux flow state in a two-gap superconductor in which two s-wave gaps with different amplitudes exist on two separate Fermi surfaces. The flux flow resistivity is obtained on the basis of the Bardeen-Stephen relation and the result agrees well with the anomalous field dependence of the flow resistivity recently observed in the two-gap superconductor MgB2. Some typical properties of the vortex in this system are also discussed.Comment: 5 pages, 1 figure. Some typos are corrected. Some comments are added. To be published in J. Phys. Soc. Jp

    Mesoscopic Phase Separation in Anisotropic Superconductors

    Full text link
    General properties of anisotropic superconductors with mesoscopic phase separation are analysed. The main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occurrence of superconductivity in bad conductors. Critical temperature for a mixture of pairing symmetries is higher than the critical temperature related to any pure gap-wave symmetry of this mixture. In bad conductors, the critical temperature as a function of the superconductivity fraction has a bell shape. Phase separation makes the single-particle energy dispersion softer. For planar structures phase separation suppresses d-wave superconductivity and enhances s-wave superconductivity. These features are in agreement with experiments for cuprates.Comment: Revtex file, 25 pages, 2 figure

    Finite states in four dimensional quantized gravity

    Full text link
    This is the first in a series of papers outlining an algorithm to explicitly construct finite quantum states of the full theory of gravity in Ashtekar variables. The algorithm is based upon extending some properties of a special state, the Kodama state for pure gravity with cosmological term, to matter-coupled models. We then illustrate a presciption for nonperturbatively constructing the generalized Kodama states, in preparation for subsequent works in this series. We also introduce the concept of the semiclassical-quantum correspondence (SQC). We express the quantum constraints of the full theory as a system of equations to be solved for the constituents of the `phase' of the wavefunction. Additionally, we provide a variety of representations of the generalized Kodama states including a generalization of the topological instanton term to include matter fields, for which we present arguments for the field-theoretical analogue of cohomology on infinite dimensional spaces. We demonstrate that the Dirac, reduced phase space and geometric quantization procedures are all equivalent for these generalized Kodama states as a natural consequence of the SQC. We relegate the method of the solution to the constraints and other associated ramifications of the generalized Kodama states to separate works.Comment: 42 pages: Accepted for publication by Class. Quantum Grav. journa
    corecore