2 research outputs found

    Genotyping with a 198 Mutation Arrayed Primer Extension Array for Hereditary Hearing Loss: Assessment of Its Diagnostic Value for Medical Practice

    Get PDF
    Molecular diagnostic testing of individuals with congenital sensorineural hearing loss typically begins with DNA sequencing of the GJB2 gene. If the cause of the hearing loss is not identified in GJB2, additional testing can be ordered. However, the step-wise analysis of several genes often results in a protracted diagnostic process. The more comprehensive Hereditary Hearing Loss Arrayed Primer Extension microarray enables analysis of 198 mutations across eight genes (GJB2, GJB6, GJB3, GJA1, SLC26A4, SLC26A5, MTRNR1 and MTTS1) in a single test. To evaluate the added diagnostic value of this microarray for our ethnically diverse patient population, we tested 144 individuals with congenital sensorineural hearing loss who were negative for biallelic GJB2 or GJB6 mutations. The array successfully detected all GJB2 changes previously identified in the study group, confirming excellent assay performance. Additional mutations were identified in the SLC26A4, SLC26A5 and MTRNR1 genes of 12/144 individuals (8.3%), four of whom (2.8%) had genotypes consistent with pathogenicity. These results suggest that the current format of this microarray falls short of adding diagnostic value beyond the customary testing of GJB2, perhaps reflecting the array's limitations on the number of mutations included for each gene, but more likely resulting from unknown genetic contributors to this phenotype. We conclude that mutations in other hearing loss associated genes should be incorporated in the array as knowledge of the etiology of hearing loss evolves. Such future modification of the flexible configuration of the Hereditary Hearing Loss Arrayed Primer Extension microarray would improve its impact as a diagnostic tool

    Homozygosity mapping of Marinesco-Sjogren syndrome to 5q31

    No full text
    Marinesco-Sj\uf6gren syndrome (MSS), first described in 1931, is an autosomal recessive condition characterised by somatic and mental retardation, congenital cataracts and cerebellar ataxia. Progressive myopathy was later reported to be also a cardinal sign of MSS, with myopathic changes on muscle biopsies. Hypergonadotrophic hypogonadism and skeletal deformities related to pronounced hypotonia were also reported. The major differential diagnosis of MSS is the syndrome defined by congenital cataracts, facial dysmorphism and peripheral neuropathy (CCFDN), which is localised to 18qter. Using homozygosity mapping strategy in two large consanguineous families of Turkish and Norwegian origin, respectively, we have identified the MSS locus on chromosome 5q31. LOD score calculation, including the consanguinity loops, gave a maximum value of 2.9 and 5.6 at theta=0 for the Turkish and the Norwegian families, respectively, indicating linkage between the disease and the D5S1995-D5S436 haplotype spanning a 9.3 cM interval. Patients of the two families presented with the strict clinical features of MSS. On the other hand, the study of two smaller French and Italian families, initially diagnosed as presenting an atypical MS syndrome, clearly excluded linkage from both the MSS locus on 5q31 and the CCFDN locus in 18qter. Patients of the two excluded families had all MSS features (but the myopathic changes) plus peripheral neuropathy and optic atrophy, and various combinations of microcornea, hearing impairment, seizures, Type I diabetes, cerebral atrophy and leucoencephalopathy, indicating that only the pure MSS syndrome is a homogeneous genetic entity
    corecore