1,521 research outputs found

    On the exactness of soft theorems

    Get PDF
    Soft behaviours of S-matrix for massless theories reflect the underlying symmetry principle that enforces its masslessness. As an expansion in soft momenta, sub-leading soft theorems can arise either due to (I) unique structure of the fundamental vertex or (II) presence of enhanced broken-symmetries. While the former is expected to be modified by infrared or ultraviolet divergences, the latter should remain exact to all orders in perturbation theory. Using current algebra, we clarify such distinction for spontaneously broken (super) Poincar\'e and (super) conformal symmetry. We compute the UV divergences of DBI, conformal DBI, and A-V theory to verify the exactness of type (II) soft theorems, while type (I) are shown to be broken and the soft-modifying higher-dimensional operators are identified. As further evidence for the exactness of type (II) soft theorems, we consider the alpha' expansion of both super and bosonic open strings amplitudes, and verify the validity of the translation symmetry breaking soft-theorems up to O(alpha'^6). Thus the massless S-matrix of string theory "knows" about the presence of D-branes.Comment: 35 pages. Additional mathematica note book with the UV-divergenece of the 6-point amplitude in AV/KS theor

    High temperature expansion applied to fermions near Feshbach resonance

    Full text link
    We show that, apart from a difference in scale, all of the surprising recently observed properties of a degenerate Fermi gas near a Feshbach resonance persist in the high temperature Boltzmann regime. In this regime, the Feshbach resonance is unshifted. By sweeping across the resonance, a thermal distribution of bound states (molecules) can be reversibly generated. Throughout this process, the interaction energy is negative and continuous. We also show that this behavior must persist at lower temperatures unless there is a phase transition as the temperature is lowered. We rigorously demonstrate universal behavior near the resonance.Comment: 4 pages, 4 figures (3 color, 1 BW), RevTeX4; ver4 -- updated references, changed title -- version accepted for publication in Physical Review Letter

    Exploring soft constraints on effective actions

    Get PDF
    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4\mathcal{N}=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order sn∼∂2ns^{n} \sim \partial^{2n} are completely determined in terms of the kk-point amplitudes at order sks^k with k≤nk \leq n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.Comment: 20+4 pages, 1 figure; v2: references added, typos corrected; v3: typos corrected, JHEP versio

    Rapidly Rotating Fermi Gases

    Full text link
    We show that the density profile of a Fermi gas in rapidly rotating potential will develop prominent features reflecting the underlying Landau level like energy spectrum. Depending on the aspect ratio of the trap, these features can be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil

    Fermion Superfluids of Non-Zero Orbital Angular Momentum near Resonance

    Full text link
    We study the pairing of Fermi gases near the scattering resonance of the ℓ≠0\ell\neq 0 partial wave. Using a model potential which reproduces the actual two-body low energy scattering amplitude, we have obtained an analytic solution of the gap equation. We show that the ground state of ℓ=1\ell=1 and ℓ=3\ell=3 superfluid are orbital ferromagnets with pairing wavefunctions Y11Y_{11} and Y32Y_{32} respectively. For ℓ=2\ell=2, there is a degeneracy between Y22Y_{22} and a "cyclic state". Dipole energy will orient the angular momentum axis. The gap function can be determined by the angular dependence of the momentum distribution of the fermions.Comment: 4 pages, 1 figur

    Generalized Unitarity and Six-Dimensional Helicity

    Full text link
    We combine the unitarity method with the six-dimensional helicity formalism of Cheung and O'Connell to construct loop-level scattering amplitudes. As a first example, we construct dimensionally regularized QCD one-loop four-point amplitudes. As a nontrivial multiloop example, we confirm that the recently constructed four-loop four-point amplitude of N=4 super-Yang-Mills theory, including nonplanar contributions, is valid for dimensions less than or equal to six. We comment on the connection of our approach to the recently discussed Higgs infrared regulator and on dual conformal properties in six dimensions.Comment: 38 pages, 7 figures, typos correcte

    Remarkable co-catalyst effects on the enantioselective hydrogenation of unfunctionalised enamines : both enantiomers of product from the same enantiomer of catalyst

    Get PDF
    During studies on the enantioselective hydrogenation of unfunctionalised enamines, a very surprising switch in enantiopreference was observed; [((R,R)-Et-DUPHOS)-Rh(COD)]BF4 hydrogenates an enamine to give (R)-amine with up to 73% ee, but when iodine is added as a co-catalyst, the (S)-amine is formed with up to 61% ee. Mechanistic studies implicate a protonation-iminium ion reduction pathway.PostprintPeer reviewe

    Spinor Bose Condensates in Optical Traps

    Full text link
    In an optical trap, the ground state of spin-1 Bosons such as 23^{23}Na, 39^{39}K, and 87^{87}Rb can be either a ferromagnetic or a "polar" state, depending on the scattering lengths in different angular momentum channel. The collective modes of these states have very different spin character and spatial distributions. While ordinary vortices are stable in the polar state, only those with unit circulation are stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices like those of superfluid 3^{3}He-A. Current estimates of scattering lengths suggest that the ground states of 23^{23}Na and 87^{87}Rb condensate are a polar state and a ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
    • …
    corecore