89 research outputs found

    Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis

    Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

    Get PDF
    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death

    Cell death: protein misfolding and neurodegenerative diseases

    Full text link

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    N-methyl-D-aspartate receptor subunit NR3A in the retina: Developmental expression, cellular localization, and functional aspects

    No full text
    PURPOSE. Recently, a novel N-methyl-D-aspartate receptor (NMDAR) subunit, NR3A, has been discovered in the brain and shown to decrease NMDAR activity by modulating the calcium permeability of the receptor channel. The insertion of NR3A within the NMDAR complex may thus alter NMDAR properties and play a crucial role during processes of neuronal development and degeneration. The present study is the first to investigate the expression and cellular localization of NR3A on the protein level in the retina and to elucidate its putative functional roles within the retinal circuitry. METHODS. The expression of NR3A in the retina was analyzed by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot analysis. Functional aspects of NR3A in the retina were addressed by measuring the NMDA-induced increase in intracellular calcium, [Ca2+](i), in retinal cells prepared from wild-type (NR3A(+/+)) and NR3A knockout (NR3A(+/-), and NR3A(-/-)) mice. RESULTS. NR3A protein expression was initially observed in the first postnatal week and was predominantly localized to cell bodies in the ganglion cell layer. In older animals, two bands of NR3A immunoreactivity were additionally observed in the inner plexiform layer. NMDA-evoked [Ca2+](i) responses were found to be significantly greater in retinal cells in NR3A(-/-) mice than in wild-type retinas. CONCLUSIONS. The data indicate that NR3A is specifically expressed in the inner retina and may modulate NMDAR-mediated calcium influx and thus [Ca2+](i) levels in retinal ganglion cells anti amacrine cells
    corecore