1,191 research outputs found

    Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models

    Full text link
    The strong gravitational field of neutron stars in the brany universe could be described by spherically symmetric solutions with a metric in the exterior to the brany stars being of the Reissner-Nordstrom type containing a brany tidal charge representing the tidal effect of the bulk spacetime onto the star structure. We investigate the role of the tidal charge in orbital models of high-frequency quasiperiodic oscillations (QPOs) observed in neutron star binary systems. We focus on the relativistic precession model. We give the radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic oscillations. We show how the standard relativistic precession model modified by the tidal charge fits the observational data, giving estimates of the allowed values of the tidal charge and the brane tension based on the processes going in the vicinity of neutron stars. We compare the strong field regime restrictions with those given in the weak-field limit of solar system experiments.Comment: 26 pages, 6 figure

    DEVELOPMENT OF A NEW GRANULATION TECHNIQUE. II

    Get PDF

    Orbital resonances in discs around braneworld Kerr black holes

    Full text link
    Rotating black holes in the brany universe of the Randall-Sundrum type are described by the Kerr geometry with a tidal charge b representing the interaction of the brany black hole and the bulk spacetime. For b<0 rotating black holes with dimensionless spin a>1 are allowed. We investigate the role of the tidal charge b in the orbital resonance model of QPOs in black hole systems. The orbital Keplerian, the radial and vertical epicyclic frequencies of the equatorial, quasicircular geodetical motion are given and their radial profiles are discussed. The resonant conditions are given in three astrophysically relevant situations: for direct (parametric) resonances, for the relativistic precession model, and for some trapped oscillations of the warped discs, with resonant combinational frequencies. It is shown, how b could influence matching of the observational data indicating the 3:2 frequency ratio observed in GRS 1915+105 microquasar with prediction of the orbital resonance model; limits on allowed range of the black hole parameters a and b are established. The "magic" dimensionless black hole spin enabling presence of strong resonant phenomena at the radius where \nu_K:\nu_{\theta}:\nu_r=3:2:1 is determined in dependence on b. Such strong resonances could be relevant even in sources with highly scattered resonant frequencies, as those expected in Sgr A*. The specific values of a and b are given also for existence of specific radius where \nu_K:\nu_{\theta}:\nu_r=s:t:u with 5>=s>t>u being small natural numbers. It is shown that for some ratios such situation is impossible in the field of black holes. We can conclude that analysing the microquasars high-frequency QPOs in the framework of orbital resonance models, we can put relevant limits on the tidal charge of brany Kerr black holes.Comment: 31 pages, 19 figures, to appear in General Relativity and Gravitatio

    STUDIES OF ISOTOPE EXCHANGE ON THE INTERFACE MERCURY/MERCURY(II) SALT SOLUTION

    Get PDF
    • 

    corecore