19 research outputs found

    Supplementary Material for: Neuropathology of Partial PGC-1α Deficiency Recapitulates Features of Mitochondrial Encephalopathies but Not of Neurodegenerative Diseases

    No full text
    <b><i>Background:</i></b> Deficient peroxisome proliferator-activated receptor-Îł coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. <b><i>Objective:</i></b> To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. <b><i>Methods:</i></b> To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-ÎČ, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, KlĂŒver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. <b><i>Results:</i></b> The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. <b><i>Conclusion:</i></b> We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases

    Osteopontin in cerebrospinal fluid as diagnostic biomarker for central nervous system lymphoma

    Full text link
    Central nervous system lymphoma (CNSL) is diagnostically challenging. The identification of reliable and easy to measure biomarkers is desirable to facilitate diagnosis. Here, we evaluated the value of cerebrospinal fluid (CSF) osteopontin (OPN) as a diagnostic biomarker for CNSL. OPN concentrations in CSF from 37 patients with CNSL (29 with primary CNSL and 8 with secondary CNS involvement of systemic lymphoma) and 36 controls [6 patients with inflammatory CNS disease other than multiple sclerosis (MS), 8 with MS, 9 with glioblastoma (GBM) and 13 healthy controls] were determined using an enzyme-linked immunosorbent assay. Non-parametric tests and receiver operating characteristic (ROC) curves were performed for determination of diagnostic accuracy. Median CSF OPN level in all CNSL patients was 620 ng/mL and higher than in patients with inflammatory CNS disease (356 ng/mL); P < .05, MS (163 ng/mL); P < .01, GBM (41 ng/mL); P < .01, or healthy controls (319 ng/mL); P < .01. The area under the ROC curve was 0.865 [95 % confidence interval (CI) 0.745-0.985] for differentiating CNSL and patients with inflammatory CNS disease; 0.956 (95 % CI 0.898-1.000) for CNSL and MS patients; 0.988 (95 % CI 0.964-1.000) for CNSL and GBM patients, and 0.915 (95 % CI 0.834-0.996) for CNSL patients and healthy controls. In multivariate analysis, high CSF OPN level was associated with shorter progression-free (HR 1.61, 95 % CI 1.13-2.31; P = .009) and overall survival (HR 1.52, 95 % CI 1.04-2.21; P = .029). CSF OPN is a potential biomarker in CNSL
    corecore