9,112 research outputs found
Reset and switch protocols at Landauer limit in a graphene buckled ribbon
Heat produced during a reset operation is meant to show a fundamental bound
known as Landauer limit, while simple switch operations have an expected
minimum amount of produced heat equal to zero. However, in both cases,
present-day technology realizations dissipate far beyond these theoretical
limits. In this paper we present a study based on molecular dynamics
simulations, where reset and switch protocols are applied on a graphene buckled
ribbon, employed here as a nano electromechanical switch working at the
thermodynamic limit
Enhancement of metabolite production in high-altitude microalgal strains by optimized C/N/P ratio
This study evaluated the role of C/N/P in the increase in the synthesis of carbohydrates, proteins, and lipids in two high-mountain strains of algae (Chlorella sp. UFPS019 and Desmodesmus sp. UFPS021). Three carbon sources (sodium acetate, sodium carbonate, and sodium bicarbonate), and the sources of nitrogen (NaNO3) and phosphate (KH2PO4 and K2HPO4) were analyzed using a surface response (3 factors, 2 levels). In Chlorella sp. UFPS019, the optimal conditions to enhance the synthesis of carbohydrates were high sodium carbonate content (3.53 g/L), high KH2PO4 and K2HPO4 content (0.06 and 0.14 g/L, respectively), and medium-high NaNO3 (0.1875 g/L). In the case of lipids, a high concentration of sodium acetate (1.19 g/L) coupled with high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively) and a low concentration of NaNO3 (0.075 g/L) drastically induced the synthesis of lipids. In the case of Desmodesmus sp. UFPS021, the protein content was increased using high sodium acetate (2 g/L), high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively), and high NaNO3 concentration (0.25 g/L). These results demonstrate that the correct adjustment of the C/N/P ratio can enhance the capacity of high-mountain strains of algae to produce high concentrations of carbohydrates, proteins, and lipids
A simulation analysis of an influenza vaccine production plant in areas of high humanitarian flow. A preliminary study for the region of norte de santander (colombia)
The production of vaccines of biological origin presents a tremendous challenge for re-searchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work fo-cuses its efforts on evaluating an alternative for producing an anti‐influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supple-mented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale‐up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recom-binant vaccines with competitive prices of up to 0.31 USD/unit
Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI–OMERACT task force
OBJECTIVE: The objective of this work was to compare the measurement properties of three categorical X-ray scoring methods of knee osteoarthritis (OA), both on semiflexed and extended views. METHODS: In data obtained from trials and cohorts, X-rays were graded using Kellgren and Lawrence (KL), the OA Research Society International (OARSI) joint space narrowing score, and measurement of joint space width (JSW). JSW was analyzed as a categorical variable. Construct validity was assessed through logistic regression between X-ray stages and Western Ontario and McMaster Universities OA Index. Inter-observer reliability was assessed in 50 subjects for extended views by weighted kappa. Intra-observer reliability and sensitivity to change were assessed separately for extended and semiflexed views in 50 patients who had both views performed, over a 30-month interval, by weighted kappa and standardized response mean (SRM). RESULTS: Extended views were available from three trials and two cohorts (1759 X-rays), including one trial in which both extended and semiflexed views (antero-posterior) were obtained. Correlation with clinical parameters was low for the three scoring methods, except for the single community-based cohort. Inter-rater reliability was higher for categorical JSW in extended views (kappa, 0.86 vs 0.56 and 0.48 for KL and OARSI, respectively). Intra-rater reliability was higher for categorical JSW, both in extended views (0.83 vs 0.61 and 0.71) and in semiflexed views (0.89 vs 0.50 and 0.67). Sensitivity to change was also higher for categorical JSW, particularly in semiflexed views (SRM, 0.49 vs 0.22 and 0.34). CONCLUSION: These results indicate categorical JSW, in particular on semiflexed views, may be the preferred method to evaluate structural severity in knee OA clinical trials
Application of Chlorella sp. and Scenedesmus sp. in the bioconversion of urban leachates into industrially relevant metabolites
This paper explores the ability of Chlorella sp. and Scenedesmus sp. to convert landfill leachates into usable metabolites. Different concentrations (0.5, 1, 5, and 10% v/v) of leachate coupled with an inorganic carbon source (Na2CO3, and NaHCO3) were tested to improve biomass production, metabolites synthesis, and removal of NO3 and PO4 . The result shows that both strains can effectively grow in media with up to 5% (v/v) leachate, while significantly reducing the concentrations of NO3, and PO4 (80 and 50%, respectively). The addition of NaHCO3 as a carbon source improved the final concentration of biomass, lipids, carbohydrates, and the removal of NO3 and PO4 in both strains
Removal of nutrients and pesticides from agricultural runoff using microalgae and cyanobacteria
The use of pesticides in agriculture has ensured the production of different crops. However, pesticides have become an emerging public health problem for Latin American countries due to their excessive use, inadequate application, toxic characteristics, and minimal residue control. The current project evaluates the ability of two strains of algae (Chlorella and Scenedesmus sp.) and one cyanobacteria (Hapalosyphon sp.) to remove excess pesticides and other nutrients present in runoff water from rice production. Different concentrations of wastewater and carbon sources (Na2CO3 and NaHCO3 ) were evaluated. According to the results, all three strains can be grown in wastewater without dilution (100%), with a biomass concentration comparable to a synthetic medium. All three strains significantly reduced the concentration of NO3 and PO4 (95 and 85%, respectively), with no difference between Na2CO3 or NaHCO3 . Finally, Chlorella sp. obtained the highest removal efficiency of the pesticide (Chlorpyrifos), followed by Scenedesmus and Hapalosyphon sp. (100, 75, and 50%, respectively). This work shows that it is possible to use this type of waste as an alternative source of nutrients to obtain biomass and metabolites of interest, such as lipids and carbohydrates, to produce biofuels
A simulation analysis of a microalgal-production plant for the transformation of inland-fisheries wastewater in sustainable feed
The present research evaluates the simulation of a system for transforming inland-fisheries wastewater into sustainable fish feed using Designer® software. The data required were obtained from the experimental cultivation of Chlorella sp. in wastewater supplemented with N and P. According to the results, it is possible to produce up to 11,875 kg/year (31.3 kg/d) with a production cost of up to 18 (USD/kg) for dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it was possible to establish the kinetics of growth of substrate-dependent biomass with a maximum production of 1.25 g/L after 15 days and 98% removal of available N coupled with 20% of P. It is essential to note the final production efficiency may vary depending on uncontrollable variables such as climate and quality of wastewater, among others
The effect of LEDs on biomass and phycobiliproteins production in thermotolerant oscillatoria sp
Featured Application: The selection of LEDs wavelength, intensity, and light: Dark cycle positively enhances the biomass production and phycocyanin synthesis in Oscillatoria sp. This study evaluates the role of different LED lights (white, blue/red), intensity (µmol m−2 s−1), and photoperiod in the production of biomass and phycocyanin-C, allophycocyanin and phycoerythrin (C-PC, APC, and PE respectively) from a novel thermotolerant strain of Oscillatoria sp. Results show that a mixture of white with blue/red LEDs can effectively double the biomass concentration up to 1.3 g/L, while the concentration of the selected phycobiliproteins increased proportionally to biomass. Results also indicate that high light intensities (>120 µmol m−2 s−1) can diminish the final concentration of C-PC, APC, and PE, significantly reducing the overall biomass produced. Finally, the photoperiod analysis showed that longer light exposure times (18:6 h) improved both biomass and phycobiliproteins concentration. These results demonstrate that the application of LEDs to produce a novel strain of Oscillatoria sp can double the biomass concentration, and the photoperiod regulation can eventually enhance the final concentration of specific phycobiliproteins such as APC and PE
- …