70 research outputs found

    ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleoside analog, ARC (NSC 188491) is a recently characterized transcriptional inhibitor that selectively kills cancer cells and has the ability to perturb angiogenesis <it>in vitro</it>. In this study, the mechanism of action of ARC was further investigated by comparing <it>in vitro </it>and <it>in vivo </it>activity with other anti-neoplastic purines.</p> <p>Methods</p> <p>Structure-based homology searches were used to identify those compounds with similarity to ARC. Comparator compounds were then evaluated alongside ARC in the context of viability, cell cycle and apoptosis assays to establish any similarities. Following this, biological overlap was explored in detail using gene-expression analysis and kinase inhibition assays.</p> <p>Results</p> <p>Results demonstrated that sangivamycin, an extensively characterized pro-apoptotic nucleoside isolated from <it>Streptomyces</it>, had identical activity to ARC in terms of 1) cytotoxicity assays, 2) ability to induce a G<sub>2</sub>/M block, 3) inhibitory effects on RNA/DNA/protein synthesis, 4) transcriptomic response to treatment, 5) inhibition of protein kinase C, 6) inhibition of positive transcription elongation factor b (P-TEFb), 7) inhibition of VEGF secretion, and 8) activity within hollow fiber assays. Extending ARC activity to PKC inhibition provides a molecular basis for ARC cancer selectivity and anti-angiogenic effects. Furthermore, functional overlap between ARC and sangivamycin suggests that development of ARC may benefit from a retrospective of previous sangivamycin clinical trials. However, ARC was found to be inactive in several xenograft models, likely a consequence of rapid serum clearance.</p> <p>Conclusion</p> <p>Overall, these data expand on the biological properties of ARC but suggest additional studies are required before it can be considered a clinical trials candidate.</p

    CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding

    Get PDF
    In order to identify potential markers of renal cancer, the plasma membrane protein content of renal cell carcinoma (RCC)-derived cell lines was annotated using a proteomics process. One unusual protein identified at high levels in A498 and 786-O cells was CD70 (TNFSF7), a type II transmembrane receptor normally expressed on a subset of B, T and NK cells, where it plays a costimulatory role in immune cell activation. Immunohistochemical analysis of CD70 expression in multiple carcinoma types demonstrated strong CD70 staining in RCC tissues. Metastatic tissues from eight of 11 patients with clear cell RCC were positive for CD70 expression. Immunocytochemical analysis demonstrated that binding of an anti-CD70 antibody to CD70 endogenously expressed on the surface of A498 and 786-O cell lines resulted in the rapid internalisation of the antibody–receptor complex. Coincubation of the internalising anti-CD70 antibody with a saporin-conjugated secondary antibody before addition to A498 cells resulted in 50% cell killing. These data indicate that CD70 represents a potential target antigen for toxin-conjugated therapeutic antibody treatment of RCC

    Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts.

    Get PDF
    Inhibition of vascular endothelial growth factor increases response rates to chemotherapy and progression-free survival in glioblastoma. However, resistance invariably occurs, prompting the urgent need for identification of synergizing agents. One possible strategy is to understand tumor adaptation to microenvironmental changes induced by antiangiogenic drugs and test agents that exploit this process. We used an in vivo glioblastoma-derived xenograft model of tumor escape in presence of continuous treatment with bevacizumab. U87-MG or U118-MG cells were subcutaneously implanted into either BALB/c SCID or athymic nude mice. Bevacizumab was given by intraperitoneal injection every 3 days (2.5 mg/kg/dose) and/or dichloroacetate (DCA) was administered by oral gavage twice daily (50 mg/kg/dose) when tumor volumes reached 0.3 cm(3) and continued until tumors reached approximately 1.5-2.0 cm(3). Microarray analysis of resistant U87 tumors revealed coordinated changes at the level of metabolic genes, in particular, a widening gap between glycolysis and mitochondrial respiration. There was a highly significant difference between U87-MG-implanted athymic nude mice 1 week after drug treatment. By 2 weeks of treatment, bevacizumab and DCA together dramatically blocked tumor growth compared to either drug alone. Similar results were seen in athymic nude mice implanted with U118-MG cells. We demonstrate for the first time that reversal of the bevacizumab-induced shift in metabolism using DCA is detrimental to neoplastic growth in vivo. As DCA is viewed as a promising agent targeting tumor metabolism, our data establish the timely proof of concept that combining it with antiangiogenic therapy represents a potent antineoplastic strategy

    Na+/K+-ATPase α1 Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity

    Get PDF
    BACKGROUND:The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+)/K(+)-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase. METHODOLOGY/PRINCIPAL FINDINGS:Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma. CONCLUSIONS/SIGNIFICANCE:The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier

    Gene expression profiling of alveolar soft-part sarcoma (ASPS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p

    Research and Science Today No. 2(4)/2012

    Full text link
    corecore