63 research outputs found

    Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications

    Get PDF
    Ceramic electrolytes formed by Bi (4 mol%)-doped 8YSZ, i.e., Y2O3 (8 mol%)-doped ZrO2, were synthesized by a simple co-precipitation route, using ammonia solution as precipitating agent. The amorphous as-synthesized powders convert into zirconia-based single phase with fluorite structure through a mild calcination step at 500 \ub0C. The calcined powders were sintered at very low temperatures (i.e., 900-1100 \ub0C) achieving in both cases very high values of relative densities (i.e., > 95%); the corresponding microstructures were highly homogeneous and characterized by micrometric grains or sub-micrometric grains for sintering at 1100 \ub0C and 900 \ub0C, respectively. Very interesting electrochemical properties were determined by Electrochemical Impedance Spectroscopy (EIS) in the best samples. In particular, their total ionic conductivity, recorded at 650 \ub0C, are 6.06 7 10-2S/cm and 4.44 7 10-2S/cm for Bi (4 mol%)-doped 8YSZ sintered at 1100 \ub0C and 900 \ub0C, respectively. Therefore, Bi was proved to be an excellent sintering aid dopant for YSZ, highly improving its densification at lower temperatures while increasing its total ionic conductivity

    Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection

    Get PDF
    Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts

    Natural Resistance-Associated Macrophage Protein Is a Cellular Receptor for Sindbis Virus in Both Insect and Mammalian Hosts

    Get PDF
    SummaryAlphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection

    Natural Resistance-associated Macrophage Protein (NRAMP) is a cellular receptor for Sindbis virus in both insect and mammalian hosts

    Get PDF
    Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of for this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter Natural Resistance-Associated Macrophage Protein (NRAMP), as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were non-permissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multi-pass membrane proteins for infection

    Compositional design of single-phase rare-earth based high-entropy oxides (HEOs) by using the cluster-plus-glue atom model

    No full text
    In the present study, we discuss a possible extension of our previously proposed empirical predictor for the formation of fluorite-structured High-Entropy Oxides (HEOs) based on equimolar mixtures of Rare-Earth (RE) Oxides. Indeed, by using the so-called cluster-plus-glue atom model, a very recently proposed theoretical model to describe the crystal structure of inorganic compounds, we were able to confirm the results of the standard deviation predictor, i.e. the relation between the formed phase(s) and the standard deviation of cationic radii, justifying them based on the phases' thermodynamic stability and the valency of the involved cations. At the same time, we propose an explanation of the role of Cerium and Zirconium in the formation of fluorite-structured HEOs, designing and predicting the behavior of a completely novel non-equimolar system (based on ZrO2, La2O3 Yb2O3, Sm2O3, Gd2O3), stabilized in a bixbyite-like single phase. Based on the presented results, we believe that a link between the geometrical aspects of the involved cations and their chemical-thermodynamic properties exists, providing a new tool to predict the behavior of systems in the intricate and intriguing world of High Entropy Oxides

    A simple and effective predictor to design novel fluorite-structured High Entropy Oxides (HEOs)

    No full text
    High-Entropy Oxides (HEOs) are a totally new class of ceramic materials that have recently attracted many scientific attentions. However, the huge intrinsic complexity and the massive number of possible combinations characterizing such systems make it hard to predict a priori their properties and their crystal structures. Moreover, the idea of designing and engineering new materials by using entropy as a driving force is conceptually exciting and intellectually stimulating. Thus, we acknowledged that predicting and synthesizing unknown entropy-stabilized single-phases of a given formula in a given crystal structure could be of great interest to the HEOs research community and, through a systematic study of 18 samples of equimolar 5-component Rare Earths-based oxides, we were able to elaborate a simple and effective predictive model to design HEOs stabilized in a single-phase fluorite-like structure. The novelty of our model, other than its simplicity and immediacy, consists in pointing out that the “dispersion” of the cationic radii of the involved elements of a certain system (expressed in terms of their standard deviation) is crucial for stabilizing fluorite-structured HEOs. Definitely, for systems owning standard deviations of the involved elements cationic radii (coordination VIII) distribution higher than 0.095, single-phase fluorite-structured systems are formed; otherwise, for s < 0.095 firstly biphasic (fluorite and bixbyite) systems are formed and then single-phase bixbyite-structured systems are formed

    GDC-based infiltrated electrodes for solid oxide electrolyzer cells (SOECs)

    Get PDF
    In this work, porous complex and metal-free cathodes based on a (La0.6Sr0.4) (Cr0.5Mn0.5) O3 (LSCM) screen-printed backbone infiltrated with Ce0.9Gd0.1O2 (GDC) were fabricated for solid oxide electrolyzer cells. GDC infiltration has been optimized by structural and microstructural investigation and tested by electrochemical measurements in CO/CO2 mixtures. Infiltrated electrodes with a non-aqueous GDC solution showed the best electro-catalytic activity towards CO2 reduction, exhibiting a much lower polarization resistance, i.e., Rpol = 0.3 Wcm2 at 900 C. The electrochemical performance of LSCM/GDCE in terms of Rpol is comparable to the best-performing Ni-YSZ cathode in the same operating conditions (Rpol = 0.23 Wcm2

    A comparative study of microstructure and ionic conduction properties of gdc solid electrolytes prepared with different synthesis routes

    No full text
    Gadolinium doped ceria solid electrolyte prepared by different methods under the same sintering profile were examined in terms of microstructure and ionic conduction performance. The GDC powders were synthesized by a modified sol gel combustion synthesis and hydrothermal treatment. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that the crystal structures of the powders synthesized by the two methods developed differently. After sintering, they showed different grain morphologies. Consequently, the electrolyte prepared from the two kinds of powders demonstrated different microstructures and different ionic conductivity. The electrolyte synthesized by sol gel methodology showed the highest ionic conductivity
    • …
    corecore