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Abstract

Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the
cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-
intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA
interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses.
Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify
cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our
genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes
were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding
our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses,
dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in
adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally
conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.
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Introduction

Historically, West Nile virus (WNV) epidemics were observed in

Africa, the Middle East, Europe, India, Australia, and parts of Asia,

In 1999, WNV entered into the North America as part of an

outbreak of neuroinvasive disease in New York City [1], and since

then has become endemic in the United States with large numbers of

cases occurring annually in different regions of the country. Indeed,

the occurrence, size, and severity of outbreaks in humans overall

have increased worldwide since the mid 1990s [2], with a large

outbreak in Texas in 2012 leading to many fatalities [3,4]. Different

strains of WNV, with variable worldwide distributions, exhibit

significant differences in pathogenesis. In humans infected with

North American WNV strains, approximately 80% of infections are

asymptomatic, with 20% developing WNV fever and other relatively

mild symptoms, and 1% progressing to encephalitis, meningitis, or

flaccid paralysis [2]. In contrast, WNV-Kunjin, endemic in

Australia, has not been associated with any human fatalities or

severe disease [5]. The natural transmission cycle of WNV is

between mosquitoes and birds, with humans, horses, and other

vertebrates being incidental dead-end hosts [2]. WNV is a member

of the Flavivirus genus, which includes many globally important

vector-borne pathogens, such as Dengue (DENV), yellow fever

(YFV), tick-borne encephalitis (TBEV), and Japanese encephalitis

viruses (JEV) [6]. DENV is endemic in more than 110 countries with

3.6 billion people at risk, and 390 million people infected yearly

[7,8]. At present, there are no specific antiviral therapies against any

flavivirus, and only three insect-borne flaviviruses have approved

vaccines for humans (YFV, TBEV, and JEV) [9].

Flaviviruses are small (,50 nm diameter) enveloped viruses that

contain a single-stranded, positive-sense RNA genome of ,11-kb

with a 59 cap, but unlike mRNA, lack a 39 polyadenylated tail

[10]. WNV enters both vertebrate and invertebrate cells through

clathrin-mediated endocytosis [11], and then traffics to an acidic

compartment that facilitates viral fusion with endosomal mem-

branes and release of the nucleocapsid into the cytoplasm [12].

The viral genome encodes one open reading frame and is

translated as a single polyprotein at the rough endoplasmic

reticulum (ER), which is subsequently processed by both viral and

cellular proteases into 3 structural and 7 non-structural viral

proteins [13]. Viral RNA replication occurs within cytoplasmic

complexes associated with perinuclear membranes requiring lipid

rearrangements [14,15,16,17], and progeny viruses bud into the

ER and traffic through the Golgi network where virions are

processed into mature particles prior to exocytosis [18].

While there has been extensive study into the cellular pathways

that are hijacked to facilitate WNV infection in mammalian cells,

less is known about the cell-intrinsic pathways that restrict WNV
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in insects and whether these pathways have conserved roles in

vertebrates. Furthermore, Flaviviruses belong to a larger group of

vector-borne RNA viruses (including Togaviruses and Bunyavi-

ruses), raising the possibility that these viruses as a group may be

restricted using shared host defense pathways. Indeed, RNA

interference (RNAi) is recognized as a major antiviral mechanism

in insects and is active against all human arthropod-borne viruses

tested including the flaviviruses WNV and DENV [19,20]. The

Jak-STAT and Toll pathways also are active in diverse insect hosts

and restrict flavivirus infection in mosquitoes [19,20]. Indeed,

many antiviral pathways active in vector insects were first shown to

restrict viral infection in the fruit fly (Drosophila melanogaster) model.

This is in part due to the depth of Drosophila genome annotation,

powerful genetic tools, potent gene silencing by RNAi, limited

genetic redundancy, a high percentage of identifiable functional

orthologs in both mosquitoes and vertebrates, lack of an acquired

immune system, and that Drosophila can be experimentally infected

by a large number of human arthropod-transmitted viruses.

Furthermore, RNAi screening is robust in Drosophila cells and has

been used effectively to analyze host-pathogen interactions and

identify genes involved in antiviral defense including components

of the RNAi silencing machinery [21,22,23,24]. Additionally,

findings in Drosophila have been extended to mosquitoes and

mammals further validating this approach [23,24,25,26,27,

28,29,30,31].

In this study, we used Drosophila to identify cell-intrinsic

antiviral genes that restrict WNV and hypothesized that a number

of these would restrict other insect-borne viruses, and some might

have conserved roles in vector insects such as mosquitoes. Since

many antiviral pathways (e.g., autophagy, Jak/Stat and Toll

pathways) are active both in mammals and insects, we speculated

that some of these newly identified factors also would confer

antiviral activity in mammalian cells. To identify such genes using

an unbiased approach we performed a genome-wide high-content

RNAi screen in Drosophila cells to identify cellular factors that

limited WNV infection. To date, RNAi screens have mainly

focused on cellular factors usurped by pathogens to promote

infection. While 22 restriction factors have been identified as anti-

flaviviral in genome-wide RNAi screens [24,32], only 2 of these

are conserved between humans and insects. We optimized the

assay for the discovery of restriction factors and identified 50 genes

that when silenced resulted in enhanced WNV infection in

Drosophila cells. All 50 are conserved in mosquitoes and 86% have

clearly defined human orthologs. Furthermore, 17 of these genes

had antiviral activity against multiple flaviviruses, and 7 genes

were antiviral against a diverse panel of additional vector-borne

RNA viruses. We focused on two broadly acting conserved genes,

dRUVBL1 (pontin) and dXPO1 (embargoed), and found both

restricted viral infection in adult flies, were antiviral in mosquito

Aedes aegypti cell culture as well as in human cells. Furthermore,

since WNV is neurotropic we tested whether RUVBL1 contrib-

utes to control of WNV in neurons and found it to be antiviral in

these cells. Mechanistically, our studies establish that dRUVBL1

along with other members of the Tip60 histone acetylase complex

are antiviral suggesting a role for this complex in virus restriction.

Furthermore, we found that dXPO1 controls the nuclear export of

specific host mRNAs, including the mRNA encoding Aldolase,

which we identified as antiviral. Collectively, we identified

additional novel, broadly acting cell-intrinsic antiviral genes in

Drosophila at least some of which function in mosquito and

vertebrate cells.

Results

RNAi screening of WNV infection of Drosophila cells
To identify cellular factors that restrict WNV infection, we first

characterized the infection of a pathogenic North American WNV

isolate (New York 2000) (referred to as WNV) [33], in Drosophila

DL1 cells. WNV successfully infected and produced infectious

virions from DL1 cells, although infection levels were substantially

lower than that observed in human cells (Figure S1A and B in
Text S1). Kinetic experiments revealed that peak immunofluo-

rescence signal of virally produced NS1 protein was 48 hours post

infection (hpi), a time point prior to substantial virus spread

(Figure S1B and C in Text S1). We next tested whether WNV

infection of Drosophila cells was dependent on similar entry and

replication pathways as in mammalian and mosquito cells.

Chlorpromazine, an inhibitor of clathrin-mediated endocytosis,

blocks entry of WNV in both mammalian and mosquito cells

[34,35], and also effectively inhibited WNV infection of Drosophila

DL1 cells (Figure S1D in Text S1). Ribavirin, a nucleoside

analog and a inhibitor of Flavivirus replication in many

mammalian cell types [36], also inhibited WNV infection of

Drosophila cells (Figure S1E in Text S1).

Next, we optimized RNAi in a 384-well format using dsRNAs

against b-galactosidase (bgal) as a negative control, and dsRNA

against the WNV genome as a positive control (Figure 1A and
B). We also included dsRNA targeting Ars2, a gene that we

previously established as antiviral in Drosophila against many

unrelated RNA viruses [21]. By selecting the infection level at

,7%, this maximized the fold-change in infection upon loss of

Ars2, allowing us to focus the assay on genes which restrict

infection. This approach contrasts with previous screens that used

a higher infection level and focused on genes that promote

infection [24,32]. Briefly, DL1 cells were seeded onto 384 well

plates pre-arrayed with dsRNAs, incubated for 3 days for effective

knockdown of target genes, and infected with WNV (Multiplicity

of infection (MOI) of 10) for 48 hours. Cells were fixed,

permeabilized and stained for the viral protein NS1 [37] and

counterstained for nuclei. Automated microscopy and image

analysis calculated the cell number per well (nuclei) and number of

infected cells (WNV NS1) to measure the percent infection. As

Author Summary

West Nile virus (WNV) is an insect-borne virus that has re-
emerged globally and for which there are no specific
therapeutics or vaccines. We set out to identify cellular
factors that impact infection using Drosophila as a model
insect. Using a genome-wide RNAi screen we identified a
large number of genes that altered WNV infection. We
focused on genes that restricted infection and validated 50
genes that were conserved from insects to humans that
inhibited infection. Since WNV is a flavivirus, we tested
whether additional flaviviruses were restricted by these
genes and found that 17 also had antiviral activity against
Dengue virus. There are additional families of insect-
transmitted viruses that infect humans. Accordingly, we
tested whether these genes also were antiviral against the
bunyavirus Rift Valley Fever virus, the alphavirus Sindbis
virus and the rhabdovirus Vesicular Stomatitis virus. From
this analysis, we identified seven genes that are antiviral
against all of these divergent arthropod-borne pathogens
expanding our knowledge of cell-intrinsic immunity in
insects. Lastly, we found that XPO1 and the Tip60 complex
had antiviral activity in mammalian cells. These data
demonstrate the existence of previously unknown antiviral
genes that restrict infection of multiple viruses across
divergent hosts.

Broadly-Acting Anti-Arboviral Host Factors
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expected, we observed a decrease in infection after treatment with

dsRNA against WNV. Importantly, we also observed a robust

increase in WNV infection upon loss of Ars2 (Figure 1A and B);

thus these optimized conditions were used for RNAi screening.

A genome-wide RNAi screen was performed in duplicate and

statistical analysis identified 537 genes (3.6% of the Drosophila

genome) that when silenced had a significant effect on the

percentage of WNV infected cells, with a robust Z score of $2 or

#22 in both replicates (p,0.001; ,40% change; Figure 1C).

None of the non-targeting controls spotted on each plate were

identified whereas 100% of the positive control dsRNAs spotted

on each plate against WNV genome and Ars2 were identified.

Silencing of 376 of these 537 genes resulted in decreased viral

infection, indicating WNV was dependent on these genes for

replication (viral sensitivity factors (VSF)). Silencing of 161 genes

resulted in increased WNV infection suggesting they normally

restrict replication (viral resistance factors (VRF)). As WNV infects

mosquitoes, birds, and vertebrates we were interested in those

genes having orthologs in hosts that normally encounter the virus,

rather than genes annotated as Drosophila specific, as flies are not

natural hosts. Analysis of this candidate gene list revealed that

,59% of the genes have orthologs in both humans and

mosquitoes (p,0.0001), with Drosophila-specific genes being greatly

under-represented (,23% of the total; p,0.0001) (Figure 1D).

Of the 537 genes identified in the primary screen, 147 were

cytotoxic (robust Z score,22 in duplicate; ,15% decrease in cell

number) and were excluded from further analysis. Only one gene

had a robust Z score.2 in duplicate but did not validate

subsequently. Additionally, 131 genes were not clearly conserved

in mosquitoes or humans (as determined by Homologene) and also

were excluded from further analysis. Of the 280 remaining genes,

we set out to validate all of the genes except for a handful that were

members of complexes in which we identified .2 components. In

those cases, we chose to validate representative genes from these

complexes (Table S1). To do this, we generated independent

dsRNA reagents that targeted 217 genes and screened this

secondary gene set under two conditions: we infected cells at a

low level of infection (4%) to maximize identification of genes that

restricted infection, and at a higher level of infection (18%) to

maximize validation of genes that promote infection. Of the 217

genes, 121 validated (56%): 82 genes (68%) facilitated WNV

infection (VSFs) and 39 genes (32%) restricted infection (VRFs).

We also validated a total of 23 genes from larger complexes

(Table S1, Table S2, and Figure S1F in Text S1). If we

Figure 1. Genome-wide RNAi screen in Drosophila for host factors involved in WNV infection. A. Representative images of DL1 cells
treated with the indicated dsRNAs and infected with WNV (nuclei, blue; WNV NS1, green). B. Quantification of fold change in infection for dsRNA
treated cells as in A. Mean 6 SD for 3 independent experiments; ** p,0.01. C. Schematic of screening pipeline including the scatter plot of Robust Z-
scores for each gene assayed in duplicate. VSFs (376) and VRFs (161) are noted. D. Bioinformatics show fraction of candidate genes that have human
or mosquito orthologs. Significant enrichment of conserved genes (p,0.0001) and under-enrichment of Drosophila-specific genes (p,0.0001) as
analyzed by chi-squared test. E. Pie chart of candidate genes and validation results (50 VRF, 96 VSF, 71 not validated). F–G. Gene ontology
enrichment of validated genes with five or more members displayed (p,0.001). F. VSF categories enriched. G. VRF categories enriched.
doi:10.1371/journal.ppat.1003914.g001

Broadly-Acting Anti-Arboviral Host Factors
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include the remaining 17 genes in the complex, the screen

identified 96 VSFs and 50 VRFs in total (Figure 1E; Table S1
and S2).

Bioinformatics analysis was used to identify processes or

pathways that impact WNV infection. First, we performed Gene

Ontology enrichment analysis on the VSF and VRF gene sets

independently (Figure 1F and G) and found biological pathways

including vesicle-mediated transport and membrane modifications

were enriched within the VSF data set, consistent with the

important role of vesicular trafficking and membrane modifica-

tions in WNV entry and replication [6]. Second, we used several

functional annotation metrics to place these validated genes into

cellular pathways and sub-cellular compartments most likely

relevant to WNV infection (red genes, VRF; green genes, VSF;

black genes not tested but in validated complexes; Figure S1G in
Text S1). We identified 29 genes involved in endocytosis and

endosomal acidification, a known entry pathway for WNV.

Furthermore, although we tested and validated only 4 of the

components in the signal recognition particle complex, we

identified 6 subunits of this complex in our primary screen,

supporting the importance of targeting the WNV polyprotein to

the ER for proper translation and processing. These findings

suggest that this screen was robust and identified important host

factors that promote infection.

The VRFs were highly conserved (86% have human orthologs)

and fell into distinct enriched groups. Two of the three categories

involved RNA metabolism, including RNA transcription, which

may be involved in an antiviral transcriptional program [31]. In

fact, 28% of the WNV VRFs (p,0.00012) have a function within

the nucleus suggesting a complex host response to infection since

WNV replicates exclusively in the cytoplasm (Figure S1F in
Text S1).

Identification of broadly antiviral factors in vector-borne
virus infections

While few antiviral pathways have been described in Drosophila,

the well characterized ones (e.g., RNA silencing machinery)

appear to inhibit infection of diverse viruses [38,39]. Given this,

we explored whether the anti-WNV factors identified also

restricted other viral pathogens. We tested two additional

flaviviruses: the WNV strain Kunjin (CH 16532; WNV-KUN)

and Dengue virus (Drosophila adapted Dengue-2 (DENV)). In

addition we tested three additional human vector-borne viruses:

Sindbis virus (HRsp; SINV), Rift Valley Fever virus (MP12;

RVFV), and vesicular stomatitis virus (Indiana; VSV) (Figure 2A).

All of these are enveloped RNA viruses transmitted to vertebrates

by an insect vector. While mosquitoes are the natural vector for

WNV, WNV-KUN, DENV, SINV and RVFV, sandflies are the

primary vector for VSV. The flaviviruses and SINV are positive

sense RNA viruses, whereas RVFV and VSV are negative sense.

RVFV has a tri-segmented genome, while the other viruses encode

a non-segmented genome. Thus, these viruses represent divergent

families and genomic architectures.

We and others have previously infected Drosophila with WNV,

DENV, SINV, RVFV and VSV [24,25,40,41,42]. However,

WNV-KUN infection of Drosophila has not been characterized.

WNV-KUN is a less pathogenic strain of WNV endemic to

Oceania [5]. We found that WNV-KUN, analogous to WNV New

York, productively infected Drosophila cells (Figure S2A and B in
Text S1). Next, we optimized conditions for RNAi screening in

384 well plates using both negative and positive control dsRNAs

based upon our previous studies selecting conditions to identify

restriction factors for WNV-KUN, DENV, SINV, RVFV and

VSV (Figure S2C–G in Text S1) [25,40,41]. We screened the

validated WNV gene set in duplicate against each virus, and Z-

scores were calculated (Table S3). We used hierarchical clustering

to compare the VRF gene dependencies of all six viruses

(Figure 2B). The four positive sense viruses clustered together

(flaviviruses WNV, WNV-KUN, and DENV, and alphavirus

SINV), while RVFV and VSV, the two negative sense viruses

clustered together. This suggests the gene signature of restriction is

related to a fundamental aspect of viral structure.

The WNV VRFs had a high propensity to impact infection by

multiple different viruses. There was a high concordance of gene

dependencies across the three flaviviruses; 31 genes (86%)

restricted WNV-KUN and 22 genes (61%) restricted DENV

(Figure 2C and Table S3). There also was a large overlap

between WNV and SINV VRFs (64%), while less so with RVFV

(38%) and VSV (25%). Thus, many anti-WNV factors appear

broadly antiviral against other flaviviruses and an unrelated

positive strand RNA virus in insect cells. The degree of VRF

overlap diminished as the viruses became more disparate

(Figure 2C). Nonetheless, we identified 7 host factors that

significantly restricted infection by all six vector-borne viruses

tested (p,0.05): dXPO1 (emb), dRUVBL1 (pont), dYARS (Aats-

tyr), dEIF1B (CG17737), dPPM1L (CG7115), dCTNS (CG17119)

and dICT1 (CG6094). All seven of these VRF genes have human

and mosquito orthologs (Figure 2D).

dRUVBL1 and the Tip60 complex restrict vector-borne
virus infection in Drosophila

Among the validated WNV VRFs, genes with putative nuclear

roles were enriched (p,0.00012) and included dRUVBL1 (pontin,

also known as Tip49), which was antiviral against all six viruses.

RUVBL1 is an ATP-binding protein belonging to the AAA+
(ATPase associated with diverse cellular activities) family of

ATPases implicated in diverse cellular pathways in the nucleus

and cytoplasm [43,44,45,46,47,48,49]. First, we validated the

antiviral activity of dRUVBL1 using independent dsRNA

targeting dRUVBL1 outside of the screening format and observed

a significant increase (p,0.05) in infection by WNV, WNV-KUN,

DENV, SINV, RVFV and VSV compared to control (Figure 3A
and B). There was no impact on cell number upon depletion of

dRUVBL1 (Figure S3A in Text S1). Next, using quantitative

RT-PCR (RT-qPCR) as an independent assay, we found that both

WNV and VSV RNA levels were increased upon dRUVBL1-

depletion compared to the control (Figure 3C and D).

One advantage of the Drosophila system is the powerful genetic

tools including the availability of genome-wide in vivo RNAi

transgenic flies. Furthermore, Drosophila are not hematophagous,

so they can be challenged easily and safely with highly pathogenic

human viruses. We took advantage of WNV-KUN as it is a BSL2

agent in comparison to the more virulent North American WNV

strains, which require a BSL3 facility [50]. Wild-type flies were

permissive to WNV-KUN infection as measured by plaque assay

and exhibited no increase in mortality compared to control flies

(Figure S3B and C in Text S1). This is consistent with the

natural infection of mosquitoes where limited pathogenesis is

observed, and similar to our observations with other vector-borne

viruses (VSV, SINV, RVFV) that display limited pathology upon

viral infection [25,40,41]. However, loss of innate immune

defenses in Drosophila or mosquitoes can render insects more

susceptible to infection and result in increased viral replication and

mortality [19,20,21,40,51,52,53]. Because null mutants in

dRUVBL1 are lethal, we took advantage of inducible RNAi

transgenic flies [54]. We used the GAL4/UAS system to promote

expression of a UAS- inverted repeat (IR) transgene that bears

long hairpin dsRNA against dRUVBL1 to target the endogenous

Broadly-Acting Anti-Arboviral Host Factors
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transcript in vivo. We induced expression of the transgene using a

heat shock (hs) promoter in adult flies allowing us to bypass any

developmental requirements. Indeed, expression of the hairpin

during development was lethal (data not shown). Importantly, heat

shock driven dRUVBL1 RNAi flies had decreased dRUVBL1

mRNA (Figure S3D in Text S1). Next, dRUVBL1-depleted (hs-

GAL4,dRUVBL1 IR) and control flies (hs-GAL4,+) were

challenged with WNV-KUN and survival was monitored.

Unchallenged dRUVBL1-depleted flies exhibited no increase in

mortality nor did control flies challenged with WNV-KUN.

Notably, the majority of WNV-KUN infected dRUVBL1-

depleted flies succumbed to infection (p,0.01, Figure 3E). We

next tested if there was an impact on viral load. Groups of 15 flies

were challenged, and whole animals were crushed, and assayed for

WNV-KUN by plaque assay in four independent experiments

(shown as individual dots). We observed modest, but increased

viral loads in dRUVBL1-depleted animals compared to controls

(set to 1) at day 6 post infection; similar results were observed at

day 9 post infection (Figure 3F, not shown).

We subsequently explored the requirement of dRUVBL1

during VSV infection, the best-studied human arbovirus in flies,

and most divergent from WNV of the vector-borne viruses tested

(Figure 2C). Again, while uninfected flies or wild type control flies

challenged with VSV exhibited little mortality, flies depleted for

dRUVBL1 and challenged with VSV showed an increase in

mortality after infection (p,0.01, Figure 3G). Groups of 15 flies

were challenged, and whole animals were crushed, and assayed for

VSV by plaque assay in seven independent experiments (shown as

individual dots). We observed modest, but increased viral loads in

dRUVBL1-depleted animals compared to controls (set to 1) at day

6 post infection (Figure 3H). Together, these results demonstrate

the important and broad-spectrum antiviral requirement for

dRUVBL1 both in vitro and in vivo in Drosophila.

dRUVBL1 has been shown to function in many complexes,

most often in conjunction with another AAA+ ATPase,

dRUVBL2 (reptin, also known as Tip48) (depicted in

Figure 4A) [43,54]. Indeed, structural and functional analysis of

human and yeast RUVBL1 and RUVBL2 suggest these proteins

Figure 2. Comparisons of virus dependencies. A. Table listing the vector-borne viruses tested and general classifications based on virus family,
genome structure, and natural vector. B. A hierarchical heat map of six viruses screened displaying Robust Z-scores for each VRF against WNV, WNV-
KUN, DEN, SINV, RVFV, and VSV. C. Percentage of WNV VRFs that also restricted the indicated virus. D. Table of the seven Drosophila genes that had
antiviral activity against all six viruses tested. Human and mosquito orthologs are listed.
doi:10.1371/journal.ppat.1003914.g002

Broadly-Acting Anti-Arboviral Host Factors
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work as a scaffold in addition to functioning as ATPases,

potentially explaining their association with a diverse set of

cellular complexes [44]. dRUVBL1, along with dRUVBL2, is

involved in chromatin remodeling, most notably in the Ino80 and

Tip60/Swr1 complexes [55,56]. Furthermore, roles in transcrip-

tional regulation facilitating the activity of c-Myc and b-catenin

also have been reported in Drosophila and human cells [57,58].

Additional roles for dRUVBL1 and dRUVBL2 have been

described in snoRNA maturation, nonsense mediated mRNA

decay, and telomere maintenance. Lastly, dRUVBL1 also has

been implicated in chromatin remodeling with the Drosophila

Trithorax complex, although this is thought to be independent of

dRUVBL2 [46]. Based on these possible functions, we tested

components of these complexes for their impact on viral infection

to identify which of the putative dRUVBL1 containing complex(-

es) mediated the antiviral activity. We designed dsRNAs against

dRUVBL2 along with the indicated genes in each of the

complexes in Figure 4A. Cells were treated with these dsRNAs,

along with b-gal (negative) and dRUVBL1 (positive) controls.

Importantly, no impact on cell viability was observed (Figure S4A

Figure 3. dRUVBL1 is a broadly antiviral gene. A. Representative images of Drosophila cells treated with control (b-gal) or dRUVBL1 dsRNA, and
infected with WNV, WNV-KUN, DEN, SIN, RVFV, or VSV (blue, nuclei; green, virus). B, Quantification of fold change in infection for dsRNA treated cells
as in A. Mean 6 SD for 3 independent experiments; * p,0.05, ** p,0.01. C–D. Viral RNA levels measured using qRT-PCR in Drosophila cells treated
with b-gal (control) or dRUVBL1 dsRNA infected with WNV (C) or VSV (D) Mean 6 SD of fold change for 3 independent experiments; ** p,0.01. E–H.
Adult flies of the indicated genotypes were challenged with vehicle or WNV-KUN (E–F) or VSV (G–H). Mortality was monitored as a function of time
post-infection (E,G) (log rank: * p,0.05, ** p,0.01). (F,H) Groups of 15 flies of the indicated genotypes were challenged, and viral titers were
assessed by plaque assay in 4–7 independent experiments (shown as individual dots) with controls (set to 1) and fold change shown at day 6 post
infection. Line represents mean.
doi:10.1371/journal.ppat.1003914.g003
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in Text S1). Next, the dsRNA treated cells were infected with

either WNV or VSV. Depletion of c-Myc, arm (Drosophila b–

catenin), Smg1, Fib and Nop60B did not impact WNV or VSV

infection levels (Figure 4B and C). In contrast, dRUVBL2 was

antiviral against both VSV and WNV (Figure 4B and C).

Depletion of both dRUVBL1 and dRUVBL2 together did not

increase infection beyond that observed with silencing of either

gene, indicating their effect was not additive (data not shown).

Increased WNV and VSV infection also was observed when

dTIP60 (Tip60), dEP400 (domino (dom)) and dSMARCA4

(Brahma (brm)) were depleted. Since dRUVBL1, dRUVBL2,

dEP400 and dTIP60 are all antiviral, and members of the Tip60

complex, these data suggest that a major antiviral role of

dRUVBL1 is through its function in the Tip60 complex.

Next, we tested whether Tip60 also restricted infection of adult

flies. Indeed, we depletion of Tip60 using in vivo RNAi led to

decreased survival of flies challenged with WNV-KUN and VSV

but did not impact survival of unchallenged animals (Figure
S4E–G in Text S1). Thus, the Tip60 complex also has antiviral

roles in vivo.

Tip60 complex is antiviral in mosquito cells
Mosquitoes are the natural vectors for WNV, WNV-KUN,

DENV, RVFV and SINV although the particular mosquito

species that transmit each of these viruses varies [59,60]. In

contrast, the primary vector for VSV is the sandfly, although VSV

has been isolated from mosquitoes [61]. Aedes aegypti is the primary

vector species for DENV transmission, and can be infected by

RVFV, WNV, WNV-KUN, and SINV [62]. Furthermore, the

Aedes aegypti genome has been sequenced [63] and the Aedes aegypti

cell line Aag2 is amenable to RNAi and routinely used as a model

for mosquito cell studies [64].

We designed dsRNAs against Aedes aegypti RUVBL1

(AAEL004686), RUVBL2 (AAEL010341), and TIP60

Figure 4. Tip60 complex has antiviral activity. A. Table of RUVBL1-associated complexes, whether the complex is dependent on RUVBL2, and
other genes in the complexes tested for antiviral activity. Genes in red were found to be antiviral against both WNV and VSV. B–C. DL1 cells were
treated with the indicated dsRNA and then infected with (B) WNV or (C) VSV. Mean 6 SD of fold change in percent infection compared to control
(bgal dsRNA) for 3 independent experiments; * p,0.05, ** p,0.01. D–E. Aag2 cells were treated with the indicated dsRNA and then infected with (D)
WNV-KUN or (E) VSV. Mean 6 SD of fold change in percent infection compared to control (bgal dsRNA) for 3 independent experiments; * p,0.05,
** p,0.01.
doi:10.1371/journal.ppat.1003914.g004
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(AAEL014072) orthologs. Prior to infection, Aag2 cells were

treated with these dsRNAs or with dsRNAs against Bgal or the

viral genome as negative and positive controls, respectively. Loss of

RUVBL1, RUVBL2, or TIP60 mosquito orthologs did not affect

cell number (Figure S4B in Text S1) but led to a significant

increase in WNV-KUN infection (p,0.05, Figure S4C in Text
S1 and Figure 4D). Similarly, each of these genes had antiviral

effects against VSV, as silencing resulted in increased infection

(p,0.05, Figure S4D in Text S1 and Figure 4E). These data

indicate that members of the Tip60 complex also have antiviral

activity in cells from a mosquito vector.

Export receptor, dXPO1, restricts virus infection in
Drosophila

dXPO1 (embargoed (emb), also known as CRM1), another

broadly antiviral gene identified in our screen, is a nuclear export

receptor conserved from yeast to humans. XPO1 shuttles proteins

and RNAs from the nucleus to the cytoplasm [65,66]. To validate

the role of dXPO1 in viral infection we tested whether an

independent dsRNA against dXPO1 modulated infection. Silenc-

ing of XPO1 with an independent dsRNA did not impact cell

number (Figure S5A in Text S1) but resulted in to 2 to 4-fold

increases in the percentage of cells infected with WNV, WNV-

KUN, DENV, SINV, RVFV or VSV as measured by microscopy

(p,0.05, Figure 5A and B). Consistent with this, loss of dXPO1

led to a $6-fold increase in both WNV and VSV RNA, as

measured by RT-qPCR (p,0.05, Figure 5C and D). Thus, a

loss of dXPO1 expression leads to increased viral replication in

Drosophila cells.

Next, we assessed whether dXPO1 was antiviral in vivo in adult

flies. Null mutants of dXPO1 are lethal [67] so we again used an

inducible RNAi and observed in vivo silencing of the mRNA

(Figure S5B in Text S1). We then challenged control (hs-

GAL4.+) or dXPO1-depleted (hs-GAL4.dXPO1 IR) flies with

vehicle, WNV-KUN or VSV. While unchallenged flies or control

challenged flies did not exhibit increased mortality, dXPO1-

depleted flies challenged with either WNV-KUN or VSV had

increased mortality (p,0.01, Figure 5E and F). Furthermore,

dXPO1-depleted flies had modestly increased WNV-KUN viral

loads, as measured by plaque assay of whole flies in four

independent experiments (individual dots) relative to control (set

to 1) (Figure 5G). And increased VSV loads, as measured by

plaque assay of whole flies in three independent experiments

(individual dots) relative to control (set to 1) (Figure 5H). These

results establish that dXPO1 is required for antiviral defense both

in cells and at the organismal level in adult flies.

XPO1 is antiviral in mosquito cells
To assess whether XPO1 also had antiviral activity in the vector

mosquito cells, we treated Aag2 cells with dsRNAs against the

Aedes aegypti XPO1 ortholog (AAEL001484) or against Bgal or the

viral genome as negative and positive controls, respectively. These

cells were subsequently challenged with WNV-KUN or VSV.

While depletion of XPO1 did not affect cell number (Figure S5B
in Text S1), we observed a significant increase in the percentage

of Aag2 cells infected with WNV-KUN or VSV (p,0.05, Figure
S5C and D in Text S1 and Figure 5I and J).

Aldolase, a target of dXPO1 nuclear export, is antiviral
Since dXPO1 is as a nuclear export receptor, we speculated that

dXPO1-dependent regulation of either host genes required for

infection or virus-induced antiviral genes may account for the

antiviral activity. Indeed, antiviral transcriptional programs have

been shown to restrict viral infections in Drosophila

[19,31,52,68,69]. Leptomycin B (LMB) is a potent and specific

inhibitor of dXPO1 mediated nuclear export [70]. Previous work

demonstrated that LMB treatment of Drosophila cells altered the

nuclear export of only 85 mRNAs (,2% of the transcripts

surveyed) [71]. One gene, bsg, was XPO1-dependent and

required for WNV infection. However, this cannot explain the

phenotype of XPO1 because bsg was required for WNV infection

and not the other viruses that are sensitive to XPO1 restriction

(Table S3). Moreover, 2 XPO1-dependent genes also were

transcriptionally induced by VSV infection (CG4294, CG30389)

[31]. We generated dsRNAs targeting CG4294 and CG30389 but

observed no impact on WNV-KUN or VSV infection (Figure 6C
and D). None of the 50 VRFs from our screen were within this

set; however, data mining of an RNAi screen with VSV in DL1

cells (S. Cherry unpublished data) identified one additional gene

(Aldolase, dALDOA) from this LMB-dependent gene set that

showed antiviral activity against VSV (Figure 6A). We generated

an independent dsRNA targeting dALDOA and observed that

depletion did not affect cell number (Figure S6A in Text S1) but

resulted in a 1.5 to 2.5-fold increase (p,0.05) in the percentage of

cells infected with WNV-KUN and VSV, respectively (Figure 6C
and D). This suggests that dXPO1-dependent mRNA export of

dALDOA contributes to the defense against multiple virus

families.

Aldolase is a critical enzyme in glycolysis, catalyzing the

conversion of fructose 1,6-biphosphate to glyceraldehyde-3-phos-

phate (G3P) and dihydroxyacetone phosphate (DHAP)

(Figure 6B). However, Aldolase may have functions apart from

glycolysis, as its expression but not all core glycolytic enzymes are

increased in response to LPS treatment [72]. To define whether

the antiviral activity of Aldolase was related to glycolysis we

performed two complementary experiments. First, we depleted

Drosophila cells of additional enzymes essential for glycolysis

(Phosphoglucose isomerase (Pgi), Phosphofructokinase (Pfk), Phos-

phoglycerate kinase (Pgk), and Phosphoglycerate mutase

(Pglym87)) (Figure 6B). Depletion of these canonical glycolysis

enzymes had no impact on cell number (Figure S6A in Text S1)

or WNV-KUN and VSV infection (Figure 6C and D). Second,

to overcome the fact that RNAi is incomplete, and that these are

enzymes which may be fully active at low levels, we took

advantage of two specific and potent glycolysis pathway inhibitors,

Dichloracetic Acid (DCA), which inhibits the enzyme pyruvate

dehydrogenase kinase, and a hexokinase inhibitor (3Br) [73].

Neither of these treatments impacted cell number (Figure S6B–E
in Text S1) or WNV-KUN and VSV infection of Drosophila cells

(Figure 6B–D). Together, these data suggest the antiviral effect of

Aldolase is not mediated through the glycolysis pathway.

XPO1 and RUVBL1 have antiviral activity in mammalian
cells

As dRUBVL1 and dXPO1 are conserved from insects to

mammals, we tested whether silencing of these genes in human

cells impacted infection. For these studies, we transfected human

osteosarcoma U2OS cells with siRNAs against a non-targeting

control, hRUVBL1 or hXPO1. Three days later, we confirmed

silencing of these genes by RT-qPCR (Figure S7A and B in
Text S1) with no impact on cell number (Figure S7C in Text
S1). Next, the cells were infected with WNV-KUN (MOI of 0.5),

and infection levels were monitored using immunofluorescence

20 hpi. Loss of either hRUVBL1 or hXPO1 resulted in a 2 to 3-

fold increase in the percentage of WNV-KUN-infected cells, as

measured by microscopy (p,0.05, Figure 7A). Consistent with

this, we observed an increase in viral RNA levels in cells depleted
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of hRUVBL1 or hXPO1 as measured by Northern blot and

quantified (p,0.05, Figure 7B). Similarly, depletion of

hRUVBL1 or hXPO1 enhanced VSV infection, as measured by

the percentage of infected cells (p,0.05, Figure 7C) or levels of

viral RNA (p,0.05, Figure 7D). Furthermore, we tested whether

RUVBL1 likely acted through the same Tip60 complex as we

found in Drosophila. To this end, we obtained independent siRNAs

against hTIP60 (KAT5) and confirmed they reduced TIP60

expression in human 293T cells as measured by RT-qPCR

(Figure S7D in Text S1). Furthermore, we observed significantly

increased WNV infection in the depleted cells (Figure 7E).

Together, these data suggest that the Tip60 complex is antiviral

against multiple viruses and in disparate hosts ranging from insects

to vertebrates.

Our initial studies in Drosophila were performed in a single round

of infection suggesting that the requirements for the genes in the

viral lifecycle included: entry, uncoating, translation, polyprotein

processing, and RNA replication. To study the step in the viral

lifecycle impacted by the Tip60 complex in mammalian cells we

took advantage of a human cell line (293T) that stably maintains a

subgenomic WNV replicon expressing GFP [74,75]. If these genes

restricted infection downstream of entry, but upstream of

assembly, they should restrict the replication of this WNV

replicon. Indeed, siRNA depletion of hRUVBL1 or hTIP60 led

to increased levels of WNV replicon replication as measured by

immunoblot (Figure S7E in Text S1). Therefore, the action of

these genes is at the step of translation, polyprotein processing, or

RNA replication.

Since WNV is a neurotropic virus we tested whether RUVBL1

restricted infection in primary neuronal cultures. We prepared

cerebellar granule cell neurons from wild-type C57BL/6 mice and

transduced them with lentiviruses expressing either a control

shRNA, or 4 independent shRNAs against RUVBL1. Three days

later, we challenged the cells with WNV (MOI = 0.1), and

harvested virus in the supernatant 24 hours later. Notably, all

four independent shRNA depleted RUVBL1 to varying extents

(Figure S7F in Text S1), and the level of depletion correlated

with a significant increase in viral titers (p,0.05, Figure 7F).

Figure 5. dXPO1 has antiviral activity in insects. A. Representative images of Drosophila cells treated with control (b-gal) or dXPO1 dsRNA, and
infected with WNV, WNV-KUN, DEN, SIN, RVFV, or VSV (blue, nuclei; green, virus). B. Quantification of fold change in infection for dsRNA treated cells
as in A. Mean 6 SD for 3 independent experiments; * p,0.05, ** p,0.01. C–D. Viral RNA levels measured using RT-qPCR in Drosophila cells treated
with b-gal (control) or dXPO1 dsRNA and infected with WNV (C) or VSV (D). Mean 6 SD of fold change for 3 independent experiments; * p,0.05. E–
H. Adult flies of the indicated genotypes were challenged with vehicle or WNV-KUN (E, G) or VSV (F, H) and mortality (E, F) was monitored as a
function of time post-infection (** p,0.01 log rank). (G, H) Groups of 15 flies of the indicated genotypes were challenged, and viral titer was assessed
by plaque assay in 3 or 4 independent experiments (shown as individual dots) with controls (set to 1) and fold change shown at day 6 post infection.
Line represents mean. I–J. Aag2 cells were treated with the indicated dsRNA and then infected with (I) WNV-KUN or (J) VSV. Mean 6 SD of fold
change in percent infection compared to control (b-gal dsRNA) for 3 independent experiments; * p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1003914.g005
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These data demonstrate that RUVBL1 restricts WNV infection in

primary neurons.

To confirm a role for hXPO1 in antiviral defense in human cells

using a small molecule inhibitor to complement our RNAi studies,

we treated U2OS cells with the XPO1 export inhibitor LMB and

monitored WNV-KUN or VSV infection. Treatment with LMB

significantly enhanced (2–3 fold) viral replication by both viruses

(p,0.05, Figure 7G and H), as measured by an increase in the

percentage of infected cells. LMB treatment did not impact cell

number (Figure S7G in Text S1). Furthermore, siRNA-

mediated depletion of hXPO1 or LMB treatment of 293T cells

carrying a WNV replicon revealed that the dependence was again

downstream of entry and upstream of assembly since both

perturbations led to increased levels of replication (Figure S7E
and S7H in Text S1). These data suggest that the hXPO1 has

antiviral activity through the regulation of XPO1-dependent cargo

export downstream of entry in evolutionarily diverse cell types

from insects to mammals.

Discussion

Genome-wide RNAi screens have been employed to identify

cellular factors required by viruses to successfully infect cells as well

as factors that, if left unmodulated by the virus, serve to suppress

infection. In addition, this screening approach can identify

pathways that regulate the expression and activity of direct

antiviral factors, orchestrating a robust antiviral response. Since

our goal was to identify conserved inhibitory pathways that span

insects and mammals with a particular interest in those having

broad antiviral activity against disparate viruses, we performed a

Figure 6. dXPO1 targets dALDOA and restricts viral infection. A. Table of genes whose mRNA export is LMB-dependent, their level of
induction by VSV infection, and whether they have been identified as antiviral previously. B. Schematic overview of glycolysis pathway (red, Aldolase
(Ald); blue, enzymes tested; black, enzymes not tested; green, inhibitors). C–D. DL1 cells were treated with the indicated dsRNA and then infected
with (C) WNV-KUN or (D) VSV. Data is presented as Mean 6 SD of fold change in percent infection compared to control (b-gal dsRNA) for 3
independent experiments; * p,0.05.
doi:10.1371/journal.ppat.1003914.g006
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genome-wide RNAi screen in Drosophila in which we deliberately

set a low infection rate, thereby sensitizing our assay to detect

factors that when suppressed result in higher levels of infection.

This is in contrast to previous genome-wide flavivirus RNAi

screens, which targeted a higher level of infection and so led to the

identification of a larger number of genes that promote infection

[24,32]. Nonetheless, our screen was sufficiently sensitive and

robust to enable us to identify 96 genes that promoted WNV

infection. Enriched gene ontology categories included pathways

such as clathrin-mediated endocytosis and endosomal acidification

that are required for flavivirus entry and were identified by earlier

RNAi screens.

We identified 50 restriction factors, greatly expanding the

number of cell intrinsic anti-WNV factors known

[32,76,77,78,79,80]. We compared our restriction factors with

previous studies (Table S4). A genome-wide siRNA screen against

WNV in human cells identified 22 genes that were antiviral of

which 6 had Drosophila homologs; none of which were within our

validated antiviral genes [32]. A genome wide screen against

hepatitis C virus, a distantly related Flaviviridae family member, in

human cells identified 25 antiviral genes of which 12 had

Drosophila orthologs; again, none of which were within our gene

set [81]. Two screens querying the antiviral role of interferon

stimulated genes (ISGs) against flaviviruses were recently published

[80,82]; however, none of our antiviral genes are known ISGs.

The Schoggins screen identified 47 ISGs that when ectopically

expressed restricted a flavivirus amongst which there were 12

homologs in Drosophila; none of which we identified as antiviral

in our screen. The Li screen identified 47 ISGs that when depleted

by RNAi restricted infection amongst which 13 had homologs in

Drosophila; none of which were identified in our screen. None of

the Drosophila homologs from any of these screens were within any

Figure 7. RUVBL1 and XPO1 restrict viral infection in mammalian cells. A–D. Human U2OS cells were transfected with siRNAs against a
control, hRuvBL1, or hXPO1 and challenged 3 days post transfection with WNV-KUN for 20 hours (A–B) or VSV for 12 hours (C–D). Cells were fixed,
processed for microscopy and quantified in A, C. Mean 6 SD of fold change compared to control for 3 independent experiments; * p,0.05,
**p,0.01. Cells were processed for northern blots and quantified displaying the mean for 3 independent experiments with control set to 1; * p,0.05,
**p,0.01 in B, D. E. 293T cells were transfected with siRNAs against control or two independent siRNAs against hTIP60 and challenged 3 days post
transfection with WNV for 24 hours and processed by flow cytometry. Three independent experiments were quantified; Mean 6 SD of the fold
change in infection is shown and normalized to the control; **p,0.01. F. Primary neurons transduced with lentiviruses expressing the indicated
shRNAs were infected with WNV for 24 hours and processed for viral yield by focus forming assays. Mean 6 SD for 3 independent experiments;
* p,0.05, **p,0.01. G–H. U2OS cells were treated with vehicle or LMB and infected with (G) WNV-KUN or (H) VSV. Mean 6 SD of fold change in
percent infection compared to control (vehicle) for 3 independent experiments; * p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1003914.g007
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other screen making conclusions difficult. Additional screens

performed at low levels of infection may reveal additional intrinsic

restriction factors.

Unexpectedly, our antiviral gene set was enriched for nuclear

functions such as RNA metabolism and transcription even though

WNV replicates exclusively in the cytoplasm. This observation

suggested that we had uncovered pathways and processes that

orchestrate an antiviral response rather than factors that interact

directly with the virus. If this were the case, as is seen with antiviral

interferon (IFN) responses in mammals, we reasoned that many of

the VRFs might have antiviral activities against additional viruses.

This in fact proved to be the case - not only did we discover a high

degree of concordance between the WNV, WNV-KUN and DEN

VRFs (WNV-KUN 86%, 31 genes; DENV 61%, 22 genes), we

identified seven genes that restricted infection of all six different

arboviruses tested, which included both positive and negative-sense

RNA genomes: dYARS (Aats-tyr), dEIF1(CG17737), dPPM1L

(CG7115), dCTNS (CG17119), dICT1 (CG6094), dXPO1 (emb),

and dRUVBL1 (pont). Since none of these genes have been

suggested previously to have an antiviral role in insects, we chose

two genes for more detailed analysis: dRUVBL1 and dXPO1.

RUVBL1 had antiviral activity in Drosophila and mosquito cells.

Depletion of dRUVBL1 in adult flies converted a non-pathogenic

infection by WNV-KUN or VSV into a pathogenic infection with

increased mortality and viral replication. These data suggest that

RUVBL1 has a highly conserved role in antiviral defense in insects,

including mosquito vectors. RUVBL1 is an AAA+ ATPase

implicated in many cellular pathways [43] and that interacts with

a number of other molecules that impact its function. By

methodically suppressing each of its known interacting partners,

we found that components of the Tip60 chromatin-remodeling

complex (TIP60, EP400 and RUVBL2) that regulates transcription

[43] were antiviral against multiple viruses in Drosophila and

mosquito cells. dTip60 also was antiviral in adult flies. Furthermore,

silencing of RUVBL1 led to increased viral infection in human

cultured cells and primary mouse neurons. Silencing of TIP60 in

human cells also rendered them more susceptible to WNV infection.

Together, these results suggest a conserved role for the Tip60

complex in antiviral defense across phylogeny. WNV subgenomic

replicons were used to show that the requirement for these genes in

restriction is downstream of entry and upstream of viral assembly,

suggesting a restriction of translation, polyprotein processing and/or

RNA replication. While further investigation is required to

determine the Tip60 targets that are responsible for the antiviral

activity and the precise step of the lifecycle impacted, the

identification of a chromatin remodeling complex as broadly

antiviral is intriguing. Innate immunity is controlled, in large part,

through the tight regulation of sequential gene expression programs

that have effector function to restrict pathogen replication. We

recently characterized a complex and rapid transcriptional antiviral

host program active in insects that includes both primary responses

which are translation-independent and secondary responses that are

translation-dependent [31]. Half of this response was controlled at

the level of transcriptional pausing, which also plays a role in innate

immune responses in mammals [31,83,84,85]. This antiviral

transcriptional program was active against a broad panel of viruses,

as we found with the Tip60 complex here. Thus, we hypothesize that

the Tip60 chromatin remodeling complex may contribute to the

orchestration of this sophisticated antiviral transcriptional response.

A recent study found that RUVBL2 was antiviral against

influenza virus by interfering with nucleoprotein (NP) oligomer-

ization that drives viral RNA polymerase activity in the nucleus;

however, in contrast to our findings, this effect was independent of

RUVBL1 function [86]. This may be a distinct and direct role for

RUVBL2 in influenza replication independent of the role for the

Tip60 complex in antiviral defense.

Many viruses, including those used in our studies inhibit host

transcriptional responses to prevent the induction of antiviral

mRNAs including IFN genes. Whether viruses target this Tip60

complex to block an antiviral transcriptional program is unknown.

Tip60 is degraded by a number of nuclear viruses including HIV,

adenovirus, papilloma virus and cytomegalovirus to promote viral

replication [87,88,89,90]. This is thought to alleviate its repression

of early gene transcription. Whether these virus interactions alter

the activity of the Tip60 complex on antiviral gene expression

remains unknown.

The second broadly-acting VRF we investigated was XPO1. At

the organismal level depletion of dXPO1 enhanced viral replication

and mortality by both WNV-KUN and VSV. Data from yeast and

humans suggest that XPO1 is a nuclear export receptor responsible

for the translocation of RNAs and proteins from the nucleus to the

cytoplasm [91,92]. However, more recent studies have suggested

that the mRNA cargo dependent on XPO1 is limited [71,93].

Inhibition of XPO1 either by RNAi or using the specific inhibitor

LMB, which blocks the nuclear export function of XPO1, resulted

in increased viral infection, which suggests the antiviral role of

XPO1 is at the step of nuclear export. As the vector-borne RNA

viruses studied here replicate exclusively in the cytoplasm, we

hypothesize that XPO1 transports cellular mRNAs critical for an

antiviral response. Indeed, viruses including VSV (used in our

study), HIV, VEEV, ebolavirus and picornaviruses inhibit nuclear

export of antiviral genes including ISG mRNAs required for defense

in mammalian cells [94,95,96,97,98,99,100,101]. Consistent with

this, LMB inhibition of XPO1 mediated export in human cells

suppressed the export of IFNa1 mRNA [99].

While a role for nuclear export in antiviral immunity has been

described in mammalian cells, its function in insect immunity was

unknown. To identify the particular mRNAs responsible for the

antiviral effects of XPO1 in Drosophila we mined a microarray

study of Drosophila cells that found less than 2% of the mRNAs

tested (85 mRNAs) exhibited nuclear export dysregulation upon

LMB treatment [71]. Depletion of one XPO1-dependent mRNA,

dALDOA (Aldolase A), resulted in enhanced virus infection in

Drosophila cells. This suggests that the transport of dALDOA

mRNA plays a role in the innate immune response to vector-borne

viral infections. As part of the glycolysis pathway, ALDOA

enzymatically cleaves fructose 1,6-bisphosphate (F-1,6-BP) into

glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phos-

phate (DHAP). Our RNAi and pharmacological experiments

suggested the mechanism of viral suppression by ALDOA was

independent of its effects on glycolysis. Future studies will be

required to define mechanistically how ALDOA acts to inhibit

viral infections in insect cells.

Collectively, we have begun to describe a series of conserved

pathways, including transcriptional pausing, chromatin remodeling

and RNA export that likely regulate the expression of gene sets

whose products are antiviral, perhaps in a direct way. For the most

part, virus-host interaction studies have often concentrated on

proteins that interact directly with the virus. Our work has revealed

pathways that orchestrate larger responses, and this confers potent

antiviral activity against a broad range of divergent viruses. Clearly,

there is still much to be learned about the cellular factors critical for

an innate immune response to vector-borne viruses in both

vertebrate and invertebrate hosts. Our identification of these cell-

intrinsic antiviral genes restricting WNV, and in many cases

additional viruses, provides new opportunities for understanding the

control mechanisms and larger antiviral programs active against

globally relevant classes of emerging viral pathogens.
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Materials and Methods

Ethics statement
This animal studies were carried out in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee at the Washington University School of Medicine

(Assurance Number: A3381-01).

Cells, antibodies, and reagents
DL1 and Aag-2 cells were grown as previously described [31].

BHK, U2OS, and 293T cells were maintained as previously

described [102]. 293T cells harboring WNV subgenomic replicon

were maintained as previously described [74,75]. Cerebellar

granule cell neurons from neonatal (E6) wild-type C57BL/6 mice

were generated from cerebella dissected in HBSS and dissociated

in 1 mg/ml trypsin with 125 U/ml DNAse (Sigma, St. Louis,

MO) for 20 min. Enzymatic digestion was quenched with

DMEM/10% FCS and the tissue was pelleted, washed in HBSS,

dissociated by trituration through a P-200 pipette tip and layered

on a Percoll gradient. Cells were plated in neurobasal media

(Gibco) supplemented with B-27 serum-free supplement (Gibco)

on poly-D-lysine (PDL)-treated dishes for 1 hour to remove

adherent glial cells. Nonadherent cells were then washed in

HBSS, counted plated on PDL-coated wells in serum-free DMEM

(supplemented with N2 growth medium (Gibco, Grand Island,

NY) and 20 mM KCl. Cultures were .95% pure and were used 3

to 4 days later for lentivirus infections [103]. Antibodies were

obtained from the following sources, anti-WNV NS1 (9-NS1;

[37]), anti-RVFV N (1D8 – gift from C. Schmaljohn), anti-hTIP60

(abcam, ab23886) and Alexa-488 donkey anti-mouse secondary

(Jackson Immunochemicals). The following inhibitors were used:

Leptomycin B (SIGMA) 50 ng/ml; Dichloracetic Acid (SIGMA)

60 mM; Hexokinase II inhibitor II (Calbiochem) 0.1 mM.

Virus stocks
West Nile virus (WNV lineage I strain 3000.0259 New York

2000) was generated in BHK cells, concentrated using Centricon

Plus-70 (Millipore), and ultracentrifuged through a sucrose

cushion as described previously [104]. The WNV-KUNV isolate

(CH16532) was a generous gift of R. Tesh (World Reference

Center of Emerging Viruses and Arboviruses, Galveston, TX) was

propagated using the same protocol as WNV. DENV (gift from M.

Garcia-Blanco) was grown as previously described [24]. SINV was

propagated as previously described [25]. RVFV strain MP12 was

propagated as described [41]. VSV was grown as described [40].

All MOIs were determined on BHK cells.

Drosophila RNAi screen
For the primary WNV screen dsRNAs targeting 13,071 genes

were pre-arrayed in thirty-two 384-well plates at 250 ng per well

(Ambion). 16,000 DL1 cells were seeded in serum-free Schneider’s

media (10 uL/well). One hour later complete media was added

(20 uL/well). Three days post plating, cells were infected with

WNV at an MOI of 10 (10 uL/well). 48 hours post infection cells

were fixed (4% formaldehyde), and a mAb against WNV NS1 (9-

NS1) was used to identify infected cells (anti-mouse Alexa-fluor488

(Jackson Immunochemicals)) and counterstained with Hoechst

33342 to monitor nuclei. 3 images per well were captured at 206
using an automated microscope (ImageXpressMicro) and analyzed

using MetaXpress software. Average infection and nuclei number

were calculated for each site and averaged for each well. The

percent infection was log-transformed, and the median and

interquartile range were used to calculate a z-score: (log10(%infec-

tion)-log10(median))/(IQR*0.74) for each plate. The entire screen

was performed in duplicate and those wells with Robust Z-

scores$to 2.0 or #to 22.0 in both replicates were considered ‘hits’.

Similar to the primary screen, secondary screen plates were

arrayed with dsRNA (250 ng) targeting a different region of the

genes identified in the primary screen (DRSC). WNV infections

were performed in duplicate at a higher (20) and lower (5) MOI

(18% and 4% respectively). Infections with other viruses used the

same protocol as WNV and were fixed at the following hours post-

infection: WNV-KUN - 48 hrs (MOI = 10), DENV - 72 hrs

(MOI = 10), SINV – 40 hrs (MOI = 5), VSV – 24 hrs (MOI = 1),

RVFV MP12 – 30 hrs (MOI = 1). Robust Z-scores in each

duplicate viral infection set of $1.5 or #1.5 in duplicate (,40%

change) were considered ‘hits’ (p,0.009); none of the negative

controls (non-targeting) were identified as positive, and all of the

positive controls (dsRNA against virus genome) were identified.

Bioinfomatic analysis
The functional annotation and clustering of WNV ‘hits’ was

performed using the DAVID Bioinfomatics resource. Homologene

(NCBI) was used to identify orthologs. Gene Cluster and

TreeView were used to generate heat maps.

Adult infections
All flies were maintained on standard medium at room

temperature. Flies carrying UAS-dXPO1 IR (VDRC v3347) or

UAS-dRUVBL1 IR (VDRC v105408) were crossed to heat shock

(HS)-GAL4 flies (Bloomington) at room temperature. On the day

of injection, the progeny were heat-shocked at 37uC for 1 hour

and shocked every 2 days throughout the experiment. Adults of

the stated genotypes were challenged with WNV-KUN or VSV as

previously described [22]. Groups of at least 20 flies were

challenged for mortality studies. For viral titers, groups of 15 flies

per experimental treatment were crushed and processed at 6 days

post-infection for plaque assays on BHK cells [31].

Quantitative PCR
Total RNA was isolated from infected cells using Trizol

(Invitrogen). For northern blots, RNA species were analyzed as

previously described [105]. For RT-qPCR, cDNA was generated

using random hexamers to prime reverse transcription reactions

using MMLV reverse transcriptase. cDNA samples were treated

with 100 U DNase I (Qiagen) according to manufacturer’s protocol.

Quantitative PCR (qPCR) was performed with the cDNA using

Power SYBR Green PCR Master Mix (Applied Biosystems) and

primers targeting VSV and WNV (VSV For-CGGAGGATT-

GACGACTAATGC, Rev-ACCATCCGAGCCATTCGA: WNV

For-ACATCAAACGTGGTTGTTCCGCTG, Rev-TTGAGGC-

TAGAGCCAAGCATAGCA) in accordance with manufacturer’s

protocol. qPCR conditions were as follows; initial 94uC for 5 min,

then 30 cycles of 94uC for 30 sec, 55uC for 30 sec, and 72uC for

30 sec. Relative viral copy numbers were generated by normalizing

to cells treated with control dsRNA.

Mammalian RNAi
For siRNA treatments, mammalian cells were reverse transfected

with 20 nM siRNA (Ambion: Negative Control #1 (AM4611), GFP

(AM4626), XPO1 (s14937), RUVBL1 (s16370)), KAT5 (s20630,

s20631) using HiPerfect according to the manufacturers protocol

(Qiagen). 60 hours post-transfection, for immunofluorescence, cells

were replated in a 96-well format and infected with either VSV or

WNV-KUN virus 12 hours later. For FACS the cells were infected
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with WNV for 24 hours and stained for NS1 or TIP60 [82] or

infected and processed for northern blot or immunoblot at 12 hr p.i.

for VSV and 20 hr p.i. for WNV-KUN.

For shRNA treatments, lentiviruses (pLK0.1) encoding shRNA

targeting RUVBL1 (clone 1: GCTGGAGATGTGATTTACATT;

clone 2: GCTGGCAAAGATCAATGGCAA; clone 3: GCCACA-

GAGTTTGACCTTGAA; clone 4: GCAAGATATTCTGTC-

TATGAT) or a control (luciferase) were obtained from RNAi Core

facility at Washington University School of Medicine. Lentivirus

particles were generated after co-transfection of HEK-293T cells

with packaging plasmids. Supernatants were collected at 48 hours

later and added to neuron cultures. Three days after transduction,

neurons were infected with WNV (New York 1999 strain) at an

MOI of 0.1. One day later, supernatants were harvested and titered

for virus infection by focus-forming assay [106].

Drug treatments
One day prior to infection U2OS or DL1 cells were seeded in 96-

well plates at 20,000 or 70,000 cells per well respectively.

Leptomycin B (SIGMA) was added at 50 ng/ml to mammalian

cells cells 2 hr prior to infection with WNV-KUN or VSV.

Dichloroacetic Acid (SIGMA) or Hexokinase II inhibitor II

(Calbiochem) were added to U2OS or DL1 cells respectively,

30 minutes prior to infection. Cells were fixed 20 (WNV-KUN) or

12 (VSV) hr post infection, stained and imaged as previously

described.

Supporting Information

Table S1 Complexes identified in the screen. Full list of

complexes identified along with the genes identified in the primary

screen and those validated in the secondary screens.

(PDF)

Table S2 Genes identified and validated in the genome-
wide RNAi screen against WNV. Full list of genes identified in

the genome-wide screen and validated in secondary screens with

the average Robust Z scores shown.

(PDF)

Table S3 Genes having antiviral activity against WNV
were tested against a panel of arboviruses. Robust Z

scores for primary and secondary screens shown. Genes that were

not tested are left blank and those in bold were validated in all

screens.

(PDF)

Table S4 List of VRFs identified in other screens. A

compilation of genes identified in published screens with activity

against flaviviruses are shown with those that have orthologs in

Drosophila listed in red. Little overlap is observed.

(PDF)

Text S1 Compilation of seven supplemental figures,
their legends and associated methods are shown.

(PDF)
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