460 research outputs found
Determining the strange and antistrange quark distributions of the nucleon
The difference between the strange and antistrange quark distributions,
\delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange
quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from
non-perturbative processes, and can be calculated using non-perturbative models
of the nucleon. We report calculations of and using
the meson cloud model. Combining our calculations of with
relatively well known light antiquark distributions obtained from global
analysis of available experimental data, we estimate the total strange sea
distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0
Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame
We study the frame dependence of nucleon structure functions obtained within
a chiral soliton model for the nucleon. Employing light cone coordinates and
introducing collective coordinates together with their conjugate momenta,
translational invariance of the solitonic quark fields (which describe the
nucleon as a localized object) is restored. This formulation allows us to
perform a Lorentz boost to the infinite momentum frame of the nucleon. The
major result is that the Lorentz contraction associated with this boost causes
the leading twist contribution to the structure functions to properly vanish
when the Bjorken variable exceeds unity. Furthermore we demonstrate that
for structure functions calculated in the valence quark approximation to the
Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has
significant effects on the structure functions for moderate values of the
Bjorken variable .Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod.
Phys.
Parton Distributions for the Octet and Decuplet Baryons
We calculate the parton distributions for both polarized and unpolarized
octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that
the hyperfine interaction responsible for the and splittings leads to large deviations from SU(3) and SU(6) predictions.
For the we find significant polarized, non-strange parton
distributions which lead to a sizable polarization in polarized,
semi-inclusive scattering. We also discuss the flavour symmetry violation
arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure
Pions in the nuclear medium and Drell-Yan scattering
We investigate the modification of the pion-cloud in the nuclear medium and
its effect on the nuclear Drell-Yan process. The pion's in-medium self-energy
is calculated in a self-consistent delta-hole model, with particle-hole
contribution also included. Both the imaginary and real part of the pion's and
delta's self-energy are taken into account and related through a dispersion
relation assuring causality. The resulting in-medium pion light-cone momentum
distribution shows only a slight enhancement compared to the one of the free
nucleon. As a consequence the ratio of the cross-section for Drell-Yan
scattering on nuclear matter and nucleonic target is close to unity in
agreement with experiment.Comment: 33 pages, Latex with epsf, figures included, to appear in Phys. Rev.
A Study of Off-Forward Parton Distributions
An extensive theoretical analysis of off-forward parton distributions (OFPDs)
is presented. The OFPDs and the form factors of the quark energy-momentum
tensor are estimated at a low-energy scale using a bag model. Relations among
the second moments of OFPDs, the form factors, and the fraction of the nucleon
spin carried by quarks are discussed.Comment: 29 pages revtex, 12 postscript figures, minor corrections, references
update
Pilot Proof of Concept Clinical Trials of Stochastic Targeted (STAR) Glycemic Control
(open access)Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach directly accounting for intra- and inter- patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) < 4.0 mmol/L. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in pilot trials.
Methods: Seven patients covering 660 hours. Insulin and nutrition interventions are given 1-3 hourly as chosen by the nurse to allow them to manage workload. Interventions are calculated by using clinically validated computer models of human metabolism and its variability in critical illness to maximize the overlap of the model-predicted (5-95th percentile) range of BG outcomes with the 4.0-6.5 mmol/L band while ensuring a maximum 5% risk of BG < 4.0 mmol/L. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of SCCM/ACCP goal (25 kg/kcal/h). Maximum insulin doses and dose changes were limited for safety. Measurements were made with glucometers. Results are compared to those for the SPRINT study, which reduced mortality 25-40% for length of stay ≥3 days. Written informed
consent was obtained for all patients, and approval was granted by the NZ Upper South A Regional Ethics Committee.
Results: A total of 402 measurements were taken over 660 hours (~14/day), because nurses showed a preference for 2-hourly measurements. Median [interquartile range, (IQR)] cohort BG was 5.9 mmol/L [5.2-6.8]. Overall, 63.2%, 75.9%, and 89.8% of measurements were in the 4.0-6.5, 4.0-7.0, and 4.0-8.0 mmol/L bands. There were no
hypoglycemic events (BG < 2.2 mmol/L), and the minimum BG was 3.5 mmol/L with 4.5% < 4.4 mmol/L. Per patient, the median [IQR] hours of TGC was 92 h [29-113] using 53 [19-62] measurements (median, ~13/day). Median [IQR] results: BG, 5.9 mmol/L [5.8-6.3]; carbohydrate nutrition, 6.8 g/h [5.5-8.7] (~70% goal feed median); insulin, 2.5 U/h [0.1-5.1]. All patients achieved BG < 6.1 mmol/L. These results match or exceed SPRINT and clinical workload is reduced more than 20%.
Conclusions: STAR TGC modulating insulin and nutrition inputs provided very tight control with minimal variability by managing intra- and inter- patient variability. Performance and safety exceed that of SPRINT, which reduced mortality and cost in the Christchurch ICU. The use of glucometers did not appear to impact the quality of TGC.
Finally, clinical workload was self-managed and reduced 20% compared with SPRINT
The Casimir Effect in Spheroidal Geometries
We study the zero point energy of massless scalar and vector fields subject
to spheroidal boundary conditions. For massless scalar fields and small
ellipticity the zero-point energy can be found using both zeta function and
Green's function methods. The result agrees with the conjecture that the zero
point energy for a boundary remains constant under small deformations of the
boundary that preserve volume (the boundary deformation conjecture), formulated
in the case of an elliptic-cylindrical boundary. In the case of massless vector
fields, an exact solution is not possible. We show that a zonal approximation
disagrees with the result of the boundary deformation conjecture. Applying our
results to the MIT bag model, we find that the zero point energy of the bag
should stabilize the bag against deformations from a spherical shape.Comment: 24 pages, 3 figures. To appear in Phys. Rev.
Flavor and Charge Symmetry in the Parton Distributions of the Nucleon
Recent calculations of charge symmetry violation(CSV) in the valence quark
distributions of the nucleon have revealed that the dominant symmetry breaking
contribution comes from the mass associated with the spectator quark
system.Assuming that the change in the spectator mass can be treated
perturbatively, we derive a model independent expression for the shift in the
parton distributions of the nucleon. This result is used to derive a relation
between the charge and flavor asymmetric contributions to the valence quark
distributions in the proton, and to calculate CSV contributions to the nucleon
sea. The CSV contribution to the Gottfried sum rule is also estimated, and
found to be small
Dynamics of Light Antiquarks in the Proton
We present a comprehensive analysis of the recent data from the E866
experiment at Fermilab on Drell-Yan production in pD and pp collisions, which
indicates a non-trivial x-dependence for the asymmetry between u-bar and d-bar
quark distributions in the proton. The relatively fast decrease of the
asymmetry at large x suggests the important role played by the chiral structure
of the nucleon, in particular the pi-N and pi-Delta components of the nucleon
wave function. At small x the data require an additional non-chiral component,
which may be attributed to the Pauli exclusion principle as first suggested by
Field and Feynman.Comment: version to appear in Phys. Rev.
- …
