59 research outputs found

    First-Order Query Evaluation with Cardinality Conditions

    Full text link
    We study an extension of first-order logic that allows to express cardinality conditions in a similar way as SQL's COUNT operator. The corresponding logic FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query evaluation for this logic is fixed-parameter tractable on classes of structures (or databases) of bounded degree. In the present paper, we first show that the fixed-parameter tractability of FOC(P) cannot even be generalised to very simple classes of structures of unbounded degree such as unranked trees or strings with a linear order relation. Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently strong to express standard applications of SQL's COUNT operator. Our main result shows that query evaluation for FOC1(P) is fixed-parameter tractable with almost linear running time on nowhere dense classes of structures. As a corollary, we also obtain a fixed-parameter tractable algorithm for counting the number of tuples satisfying a query over nowhere dense classes of structures

    On Pebble Automata for Data Languages with Decidable Emptiness Problem

    Get PDF
    In this paper we study a subclass of pebble automata (PA) for data languages for which the emptiness problem is decidable. Namely, we introduce the so-called top view weak PA. Roughly speaking, top view weak PA are weak PA where the equality test is performed only between the data values seen by the two most recently placed pebbles. The emptiness problem for this model is decidable. We also show that it is robust: alternating, nondeterministic and deterministic top view weak PA have the same recognition power. Moreover, this model is strong enough to accept all data languages expressible in Linear Temporal Logic with the future-time operators, augmented with one register freeze quantifier.Comment: An extended abstract of this work has been published in the proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science 5734, pages 712-72

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. )^\ast) By sublinear we mean O(n1ε)O(n^{1-\varepsilon}) for some ε>0\varepsilon>0, where nn is the size of the active domain of the current database

    An automaton over data words that captures EMSO logic

    Full text link
    We develop a general framework for the specification and implementation of systems whose executions are words, or partial orders, over an infinite alphabet. As a model of an implementation, we introduce class register automata, a one-way automata model over words with multiple data values. Our model combines register automata and class memory automata. It has natural interpretations. In particular, it captures communicating automata with an unbounded number of processes, whose semantics can be described as a set of (dynamic) message sequence charts. On the specification side, we provide a local existential monadic second-order logic that does not impose any restriction on the number of variables. We study the realizability problem and show that every formula from that logic can be effectively, and in elementary time, translated into an equivalent class register automaton

    Game semantic analysis of equivalence in IMJ

    Get PDF
    Using game semantics, we investigate the problem of verifying contextual equivalences in Interface Middleweight Java (IMJ), an imperative object calculus in which program phrases are typed using interfaces. Working in the setting where data types are non-recursive and restricted to finite domains, we identify the frontier between decidability and undecidability by reference to the structure of interfaces present in typing judgments. In particular, we show how to determine the decidability status of problem instances (over a fixed type signature) by examining the position of methods inside the term type and the types of its free identifiers. Our results build upon the recent fully abstract game semantics of IMJ. Decidability is proved by translation into visibly pushdown register automata over infinite alphabets with fresh-input recognition

    Highly Expressive Query Languages for Unordered Data Trees

    Full text link

    Synchronization of organ pipes: experimental observations and modeling

    Full text link
    We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg format. accepted for Journal of the Acoustical Society of Americ

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Earliest Query Answering for Deterministic Nested Word Automata

    Get PDF
    International audienceEarliest query answering (EQA) is an objective of many recent streaming algorithms for XML query answering, that aim for close to optimal memory management. In this paper, we show that EQA is infeasible even for a small fragment of Forward XPath except if P=NP. We then present an EQA algorithm for queries and schemas defined by deterministic nested word automata (dNWAs) and distinguish a large class of dNWAs for which streaming query answering is feasible in polynomial space and time

    Crime in Maine 2014

    Get PDF
    Automata over infinite alphabets have recently come to be studied extensively as potentially useful tools for solving problems in verification and database theory. One popular model of automata studied is the Class Memory Automata (CMA), for which the emptiness problem is equivalent to Petri Net Reachability. We identify a restriction - which we call weakness - of CMA, and show that their emptiness problem is equivalent to Petri Net Coverability. Further, we show that in the deterministic case they are closed under all Boolean operations. We clarify the connections between weak CMA and existing automata over data languages. We also extend CMA to operate over multiple levels of nested data values, and show that while these have undecidable emptiness in general, adding the weakness constraint recovers decidability of emptiness, via reduction to coverability in well-structured transition systems. We also examine connections with existing automata over nested data.Comment: Preprint of LATA'15 pape
    corecore