59 research outputs found
First-Order Query Evaluation with Cardinality Conditions
We study an extension of first-order logic that allows to express cardinality
conditions in a similar way as SQL's COUNT operator. The corresponding logic
FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query
evaluation for this logic is fixed-parameter tractable on classes of structures
(or databases) of bounded degree. In the present paper, we first show that the
fixed-parameter tractability of FOC(P) cannot even be generalised to very
simple classes of structures of unbounded degree such as unranked trees or
strings with a linear order relation.
Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently
strong to express standard applications of SQL's COUNT operator. Our main
result shows that query evaluation for FOC1(P) is fixed-parameter tractable
with almost linear running time on nowhere dense classes of structures. As a
corollary, we also obtain a fixed-parameter tractable algorithm for counting
the number of tuples satisfying a query over nowhere dense classes of
structures
On Pebble Automata for Data Languages with Decidable Emptiness Problem
In this paper we study a subclass of pebble automata (PA) for data languages
for which the emptiness problem is decidable. Namely, we introduce the
so-called top view weak PA. Roughly speaking, top view weak PA are weak PA
where the equality test is performed only between the data values seen by the
two most recently placed pebbles. The emptiness problem for this model is
decidable. We also show that it is robust: alternating, nondeterministic and
deterministic top view weak PA have the same recognition power. Moreover, this
model is strong enough to accept all data languages expressible in Linear
Temporal Logic with the future-time operators, augmented with one register
freeze quantifier.Comment: An extended abstract of this work has been published in the
proceedings of the 34th International Symposium on Mathematical Foundations
of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science
5734, pages 712-72
Answering Conjunctive Queries under Updates
We consider the task of enumerating and counting answers to -ary
conjunctive queries against relational databases that may be updated by
inserting or deleting tuples. We exhibit a new notion of q-hierarchical
conjunctive queries and show that these can be maintained efficiently in the
following sense. During a linear time preprocessing phase, we can build a data
structure that enables constant delay enumeration of the query results; and
when the database is updated, we can update the data structure and restart the
enumeration phase within constant time. For the special case of self-join free
conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical,
then query enumeration with sublinear delay and sublinear update time
(and arbitrary preprocessing time) is impossible.
For answering Boolean conjunctive queries and for the more general problem of
counting the number of solutions of k-ary queries we obtain complete
dichotomies: if the query's homomorphic core is q-hierarchical, then size of
the the query result can be computed in linear time and maintained with
constant update time. Otherwise, the size of the query result cannot be
maintained with sublinear update time. All our lower bounds rely on the
OMv-conjecture, a conjecture on the hardness of online matrix-vector
multiplication that has recently emerged in the field of fine-grained
complexity to characterise the hardness of dynamic problems. The lower bound
for the counting problem additionally relies on the orthogonal vectors
conjecture, which in turn is implied by the strong exponential time hypothesis.
By sublinear we mean for some
, where is the size of the active domain of the current
database
An automaton over data words that captures EMSO logic
We develop a general framework for the specification and implementation of
systems whose executions are words, or partial orders, over an infinite
alphabet. As a model of an implementation, we introduce class register
automata, a one-way automata model over words with multiple data values. Our
model combines register automata and class memory automata. It has natural
interpretations. In particular, it captures communicating automata with an
unbounded number of processes, whose semantics can be described as a set of
(dynamic) message sequence charts. On the specification side, we provide a
local existential monadic second-order logic that does not impose any
restriction on the number of variables. We study the realizability problem and
show that every formula from that logic can be effectively, and in elementary
time, translated into an equivalent class register automaton
Game semantic analysis of equivalence in IMJ
Using game semantics, we investigate the problem of verifying contextual equivalences in Interface Middleweight Java (IMJ), an imperative object calculus in which program phrases are typed using interfaces. Working in the setting where data types are non-recursive and restricted to finite domains, we identify the frontier between decidability and undecidability by reference to the structure of interfaces present in typing judgments. In particular, we show how to determine the decidability status of problem instances (over a fixed type signature) by examining the position of methods inside the term type and the types of its free identifiers. Our results build upon the recent fully abstract game semantics of IMJ. Decidability is proved by translation into visibly pushdown register automata over infinite alphabets with fresh-input recognition
Synchronization of organ pipes: experimental observations and modeling
We report measurements on the synchronization properties of organ pipes.
First, we investigate influence of an external acoustical signal from a
loudspeaker on the sound of an organ pipe. Second, the mutual influence of two
pipes with different pitch is analyzed. In analogy to the externally driven, or
mutually coupled self-sustained oscillators, one observes a frequency locking,
which can be explained by synchronization theory. Further, we measure the
dependence of the frequency of the signals emitted by two mutually detuned
pipes with varying distance between the pipes. The spectrum shows a broad
``hump'' structure, not found for coupled oscillators. This indicates a complex
coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg
format. accepted for Journal of the Acoustical Society of Americ
On insertion-deletion systems over relational words
We introduce a new notion of a relational word as a finite totally ordered
set of positions endowed with three binary relations that describe which
positions are labeled by equal data, by unequal data and those having an
undefined relation between their labels. We define the operations of insertion
and deletion on relational words generalizing corresponding operations on
strings. We prove that the transitive and reflexive closure of these operations
has a decidable membership problem for the case of short insertion-deletion
rules (of size two/three and three/two). At the same time, we show that in the
general case such systems can produce a coding of any recursively enumerable
language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure
Earliest Query Answering for Deterministic Nested Word Automata
International audienceEarliest query answering (EQA) is an objective of many recent streaming algorithms for XML query answering, that aim for close to optimal memory management. In this paper, we show that EQA is infeasible even for a small fragment of Forward XPath except if P=NP. We then present an EQA algorithm for queries and schemas defined by deterministic nested word automata (dNWAs) and distinguish a large class of dNWAs for which streaming query answering is feasible in polynomial space and time
Crime in Maine 2014
Automata over infinite alphabets have recently come to be studied extensively
as potentially useful tools for solving problems in verification and database
theory. One popular model of automata studied is the Class Memory Automata
(CMA), for which the emptiness problem is equivalent to Petri Net Reachability.
We identify a restriction - which we call weakness - of CMA, and show that
their emptiness problem is equivalent to Petri Net Coverability. Further, we
show that in the deterministic case they are closed under all Boolean
operations. We clarify the connections between weak CMA and existing automata
over data languages. We also extend CMA to operate over multiple levels of
nested data values, and show that while these have undecidable emptiness in
general, adding the weakness constraint recovers decidability of emptiness, via
reduction to coverability in well-structured transition systems. We also
examine connections with existing automata over nested data.Comment: Preprint of LATA'15 pape
- …