923 research outputs found

    Neutrino-driven wind and wind termination shock in supernova cores

    Get PDF
    The neutrino-driven wind from a nascent neutron star at the center of a supernova expands into the earlier ejecta of the explosion. Upon collision with this slower matter the wind material is decelerated in a wind termination shock. By means of hydrodynamic simulations in spherical symmetry we demonstrate that this can lead to a large increase of the wind entropy, density, and temperature, and to a strong deceleration of the wind expansion. The consequences of this phenomenon for the possible r-process nucleosynthesis in the late wind still need to be explored in detail. Two-dimensional models show that the wind-ejecta collision is highly anisotropic and could lead to a directional dependence of the nucleosynthesis even if the neutrino-driven wind itself is spherically symmetric.Comment: 6 pages, 3 figures, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Global Anisotropies in Supernova Explosions and Pulsar Recoil

    Full text link
    We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    Low relaxation rate in a low-Z alloy of iron

    Full text link
    The longest relaxation time and sharpest frequency content in ferromagnetic precession is determined by the intrinsic (Gilbert) relaxation rate \emph{GG}. For many years, pure iron (Fe) has had the lowest known value of G=57 MhzG=\textrm{57 Mhz} for all pure ferromagnetic metals or binary alloys. We show that an epitaxial iron alloy with vanadium (V) possesses values of GG which are significantly reduced, to 35±\pm5 Mhz at 27% V. The result can be understood as the role of spin-orbit coupling in generating relaxation, reduced through the atomic number ZZ.Comment: 14 pages, 4 figure

    Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows: I. Spherically symmetric hydrodynamic simulations

    Get PDF
    We investigate the behavior and consequences of the reverse shock that terminates the supersonic expansion of the baryonic wind which is driven by neutrino heating off the surface of (non-magnetized) new-born neutron stars in supernova cores. To this end we perform long-time hydrodynamic simulations in spherical symmetry. In agreement with previous relativistic wind studies, we find that the neutrino-driven outflow accelerates to supersonic velocities and in case of a compact, about 1.4 solar mass (gravitational mass) neutron star with a radius of about 10 km, the wind reaches entropies of about 100 k_B per nucleon. The wind, however, is strongly influenced by the environment of the supernova core. It is decelerated and shock-heated abruptly by a termination shock that forms when the supersonic outflow collides with the slower preceding supernova ejecta. The radial position of this reverse shock varies with time and depends on the strength of the neutrino wind and the different conditions in progenitor stars with different masses and structure. Its basic properties and behavior can be understood by simple analytic considerations. We demonstrate that the entropy of matter going through the reverse shock can increase to a multiple of the asymptotic wind value. Seconds after the onset of the explosion it therefore can exceed 400 k_B per nucleon. The temperature of the shocked wind has typically dropped to about or less than 10^9 K, and density and temperature in the shock-decelerated matter continue to decrease only very slowly. Such conditions might strongly affect the important phases of supernova nucleosynthesis in a time and progenitor dependent way. (abridged

    Neutrino Mass Implications for Muon Decay Parameters

    Get PDF
    We use the scale of neutrino mass to derive model-independent naturalness constraints on possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of effective dimension four and dimension six operators that are invariant under the gauge symmetry of the Standard Model and that contribute to both muon decay and neutrino mass. We show that -- in the absence of fine tuning -- the most stringent bounds on chirality-changing operators relevant to muon decay arise from one-loop contributions to neutrino mass. The bounds we obtain on their contributions to the Michel parameters are four or more orders of magnitude stronger than bounds previously obtained in the literature. We also show that there exist chirality-changing operators that contribute to muon decay but whose flavor structure allows them to evade neutrino mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon decay experiments.Comment: 19 pages, 4 figure

    Instability of a stalled accretion shock: evidence for the advective-acoustic cycle

    Get PDF
    We analyze the linear stability of a stalled accretion shock in a perfect gas with a parametrized cooling function L ~ rho^{beta-alpha} P^alpha. The instability is dominated by the l=1 mode if the shock radius exceeds 2-3 times the accretor radius, depending on the parameters of the cooling function. The growth rate and oscillation period are comparable to those observed in the numerical simulations of Blondin & Mezzacappa (2006). The instability mechanism is analyzed by separately measuring the efficiencies of the purely acoustic cycle and the advective-acoustic cycle. These efficiencies are estimated directly from the eigenspectrum, and also through a WKB analysis in the high frequency limit. Both methods prove that the advective-acoustic cycle is unstable, and that the purely acoustic cycle is stable. Extrapolating these results to low frequency leads us to interpret the dominant mode as an advective-acoustic instability, different from the purely acoustic interpretation of Blondin & Mezzacappa (2006). A simplified characterization of the instability is proposed, based on an advective-acoustic cycle between the shock and the radius r_nabla where the velocity gradients of the stationary flow are strongest. The importance of the coupling region in this mechanism calls for a better understanding of the conditions for an efficient advective-acoustic coupling in a decelerated, nonadiabatic flow, in order to extend these results to core-collapse supernovae.Comment: 29 pages, 18 figures, to appear in ApJ (1 new Section, 2 new Figures

    Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core

    Full text link
    By 2D hydrodynamic simulations including a detailed equation of state and neutrino transport, we investigate the interplay between different non-radial hydrodynamic instabilities that play a role during the postbounce accretion phase of collapsing stellar cores. The convective mode of instability, which is driven by negative entropy gradients caused by neutrino heating or by time variations of the shock strength, can be identified clearly by the development of typical Rayleigh-Taylor mushrooms. However, in cases where the gas in the postshock region is rapidly advected towards the gain radius, the growth of such a buoyancy instability can be suppressed. In such a situation the shocked flow nevertheless can develop non-radial asymmetry with an oscillatory growth of the amplitude. This phenomenon has been termed ``standing accretion shock instability'' (SASI). It is shown here that the SASI oscillations can trigger convective instability and like the latter they lead to an increase of the average shock radius and of the mass in the gain layer. Both hydrodynamic instabilities in combination stretch the advection time of matter through the neutrino-heating layer and thus enhance the neutrino energy deposition in support of the neutrino-driven explosion mechanism. A rapidly contracting and more compact nascent NS turns out to be favorable for explosions, because the accretion luminosity and neutrino heating are larger and the growth rate of the SASI is higher. Moreover, we show that the oscillation period of the SASI and a variety of other features in our simulations agree with estimates for the advective-acoustic cycle (AAC), in which perturbations are carried by the accretion flow from the shock to the neutron star and pressure waves close an amplifying global feedback loop. (abridged)Comment: 23 pages, 20 figures; revised version with extended Sect.5, accepted by Astronomy & Astrophysics; high-resolution images can be obtained upon reques

    Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport

    Full text link
    The overwhelming evidence that the core collapse supernova mechanism is inherently multidimensional, the complexity of the physical processes involved, and the increasing evidence from simulations that the explosion is marginal presents great computational challenges for the realistic modeling of this event, particularly in 3 spatial dimensions. We have developed a code which is scalable to computations in 3 dimensions which couples PPM Lagrangian with remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport [2], with many improvements), and a nuclear network [3]. The neutrino transport is performed in a ray-by-ray plus approximation wherein all the lateral effects of neutrinos are included (e.g., pressure, velocity corrections, advection) except the transport. A moving radial grid option permits the evolution to be carried out from initial core collapse with only modest demands on the number of radial zones. The inner part of the core is evolved after collapse along with the rest of the core and mantle by subcycling the lateral evolution near the center as demanded by the small Courant times. We present results of 2-D simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M progenitor. In each of these simulations we have discovered that once the oxygen rich material reaches the shock there is a synergistic interplay between the reduced ram pressure, the energy released by the burning of the shock heated oxygen rich material, and the neutrino energy deposition which leads to a revival of the shock and an explosion.Comment: 10 pages, 3 figure

    Multidimensional Supernova Simulations with Approximative Neutrino Transport I. Neutron Star Kicks and the Anisotropy of Neutrino-Driven Explosions in Two Spatial Dimensions

    Full text link
    By means of two-dimensional (2D) simulations we study hydrodynamic instabilities during the first seconds of neutrino-driven supernova explosions, using a PPM hydrodynamics code, supplemented with a gray, non-equilibrium approximation of radial neutrino transport. We consider three 15 solar mass progenitors with different structures and one rotating model, in which we replace the dense core of the newly formed neutron star (NS) by a contracting inner grid boundary, and trigger neutrino-driven explosions by systematically varying the neutrino fluxes emitted at this boundary. Confirming more idealized studies as well as supernova simulations with spectral transport, we find that random seed perturbations can grow by hydrodynamic instabilities to a globally asymmetric mass distribution, leading to a dominance of dipole (l=1) and quadrupole (l=2) modes in the explosion ejecta. Anisotropic gravitational and hydrodynamic forces are found to accelerate the NS on a timescale of 2-3 seconds. Since the explosion anisotropies develop chaotically, the magnitude of the corresponding kick varies stochastically in response to small differences in the fluid flow. Our more than 70 models separate into two groups, one with high and the other with low NS velocities and accelerations after 1s of post-bounce evolution, depending on whether the l=1 mode is dominant in the ejecta or not. This leads to a bimodality of the distribution when the NS velocities are extrapolated to their terminal values. The fast group has an average velocity of about 500 km/s and peak values in excess of 1000 km/s. Establishing a link to the measured distribution of pulsar velocities, however, requires a much larger set of calculations and ultimately 3D modeling. (abridged)Comment: 40 pages, 28 figures; significantly shortened and revised version according to referee's comments; accepted by Astronomy & Astrophysic
    corecore