9,941 research outputs found
Detection of an unknown rank-one component in white noise
We consider the detection of an unknown and arbitrary rank-one signal in a spatial sector scanned by a small number of beams. We address the problem of finding the maximal invariant for the problem at hand and show that it consists of the ratio of the eigenvalues of a Wishart matrix to its trace. Next, we derive the generalized-likelihood ratio test (GLRT) along with expressions for its probability density function (pdf) under both hypotheses. Special attention is paid to the case m= 2, where the GLRT is shown to be a uniformly most powerful invariant (UMPI). Numerical simulations attest to the validity of the theoretical analysis and illustrate the detection performance of the GLRT
Shared Capitalism at Work: Employee Ownership, Profit and Gain Sharing, and Broad-based Stock Options
Analysis of Fisher Information and the Cram\'{e}r-Rao Bound for Nonlinear Parameter Estimation after Compressed Sensing
In this paper, we analyze the impact of compressed sensing with complex
random matrices on Fisher information and the Cram\'{e}r-Rao Bound (CRB) for
estimating unknown parameters in the mean value function of a complex
multivariate normal distribution. We consider the class of random compression
matrices whose distribution is right-orthogonally invariant. The compression
matrix whose elements are i.i.d. standard normal random variables is one such
matrix. We show that for all such compression matrices, the Fisher information
matrix has a complex matrix beta distribution. We also derive the distribution
of CRB. These distributions can be used to quantify the loss in CRB as a
function of the Fisher information of the non-compressed data. In our numerical
examples, we consider a direction of arrival estimation problem and discuss the
use of these distributions as guidelines for choosing compression ratios based
on the resulting loss in CRB.Comment: 12 pages, 3figure
Contextual variety, Internet-of-things and the choice of tailoring over platform : mass customisation strategy in supply chain management
This paper considers the implications for Supply Chain Management from the development of the Internet of Things (IoT) or Internet Connected Objects (ICO). We focus on the opportunities and challenges arising from consumption data as a result of ICO and how this can be translated into a provider’s strategy of offering different varieties of products. In our model, we consider two possible strategies: tailoring strategy and platform strategy. Tailoring strategy implies that a provider produces multiple varieties of a product that meet consumers’ needs. Platform strategy depicts the provider’s actions in offering a flexible and standardised platform which enables consumers’ needs to be met by incorporating personal ICO data onto various customisable applications independently produced by other providers that could be called on in context and on demand. We derive conditions under which each of the strategies may be profitable for the provider through maximising consumers’ value. We conclude by considering the implications for SCM research and practice including an extension of postponement taxonomies to include the customer as the completer of the product
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0
The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters
observed with Chandra and/or XMM are used to investigate the evolution of the
cluster scaling relations. The observed evolution of the L-T and M-L relations
is consistent with simple self-similar predictions, in which the properties of
clusters reflect the properties of the universe at their redshift of
observation. When the systematic effect of assuming isothermality on the
derived masses of the high-redshift clusters is taken into account, the
high-redshift M-T and Mgas-T relations are also consistent with self-similar
evolution. Under the assumption that the model of self-similar evolution is
correct and that the local systems formed via a single spherical collapse, the
high-redshift L-T relation is consistent with the high-z clusters having formed
at a significantly higher redshift than the local systems. The data are also
consistent with the more realistic scenario of clusters forming via the
continuous accretion of material. The slope of the L-T relation at
high-redshift (B=3.29+/-0.38) is consistent with the local relation, and
significantly steeper then the self-similar prediction of B=2. This suggests
that the non-gravitational processes causing the steepening occurred at z>1 or
in the early stages of the clusters' formation, prior to their observation. The
properties of the intra-cluster medium at high-redshift are found to be similar
to those in the local universe. The mean surface-brightness profile slope for
the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200
are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the
sample is 0.28+/-0.16 solar.Comment: 23 pages, 17 figures. Accepted for publication in MNRAS. Revised to
match accepted version: reanalysed data with latest calibrations, several
minor changes. Conclusions unchange
- …
