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Detection of an Unknown Rank-One
Component in White Noise

Olivier Besson, Senior Member, IEEE, Shawn Kraut, Member, IEEE,
and Louis L. Scharf, Fellow, IEEE

Abstract—We consider the detection of an unknown and arbitrary
rank-one signal in a spatial sector scanned by a small number of beams.
We address the problem of finding the maximal invariant for the problem
at hand and show that it consists of the ratio of the eigenvalues of aWishart
matrix to its trace. Next, we derive the generalized-likelihood ratio test
(GLRT) along with expressions for its probability density function (pdf)
under both hypotheses. Special attention is paid to the case = 2, where
the GLRT is shown to be a uniformly most powerful invariant (UMPI).
Numerical simulations attest to the validity of the theoretical analysis and
illustrate the detection performance of the GLRT.

Index Terms—Array processing, detection, eigenvalues, maximal in-
variant statistic, Wishart matrices.

I. PROBLEM STATEMENT

We consider an array of sensors aimed at scanning its field of view
with the goal of detecting the presence of a source of interest in a
background of noise. Usually, the presence of a target is tested for
many potential (and thus assumed known) steering vectors (i.e., spa-
tial signature) while the temporal signature of the target is considered
as unknown with different assumptions about its statistical nature, de-
pending on the type of target that is expected. Herein, we consider that
some type of beamspace processing is first done and that we wish to
detect a source within a spatial sector. Hence, the whole field of view is
scanned on a spatial sector by spatial sector basis. Furthermore, within
a spatial sector, both the spatial and temporal signature of the target
are assumed to be unknown. In other words, we do not seek to de-
tect a target at a specified direction of arrival; rather, we try to detect
a rank-one component in the data (and as a by-product, we estimate
its space–time signature). Of course, this simpler detector may not per-
form as well as a detector that would use all the array elements and
would contain the actual steering vector of the target in the set of tested
steering vectors. Hence, the detection scheme presented here may be
viewed as a fast and simple preprocessing step; once it detects a target,
a more sophisticated detection scheme (e.g., operating in the element
space) might be used to confirm or to invalidate the decision.
The problem addressed herein can be formulated mathematically as

that of deciding between the following two hypotheses:

H0 : XXX = NNN

H1 : XXX = asasasH +NNN
(1)

where XXX = [xxx(1) � � � xxx(N)] 2 m�N is the data matrix, with m
being the number of beams used to cover a spatial sector (or the number
of array sensors if we operate in element space) and N denoting the
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number of available snapshots.NNN = [nnn(1) � � � nnn(N)] corresponds to
noise, and we assume that nnn(t) is drawn from a complex multivariate
Gaussian distribution with zero mean and covariance matrix �2III with
�2 unknown.1 In (1), aaa and sss stand for the unknown spatial and tem-
poral signatures of the target. Treating aaa as an unknown and arbitrary
quantity may also be meaningful when there exist uncertainties about
the steering vector, i.e., when the actual steering vector may anyway
suffer mismatch from the steering vector under test, or when it cannot
be written simply as a function of a (possibly unknown) parameter, for
instance the direction of arrival. This occurs when the array is not per-
fectly calibrated. In such a situation, it may not be advisable to test for
the presence of a target with presumed signature aaa while, even if the
target is present, its steering vector will be different from aaa. It should
be observed that the problem in (1) is also relevant when a monopulse
radar is used to detect a target. In such a case, m = 2, and the rows
of XXX correspond to the outputs of the sum and difference channels,
respectively.

II. DETECTION

A. Invariances of the Problem

We first consider the natural invariances of the problem with a view
to find the maximal invariant statistic for the problem at hand. The
theory of invariance is well known (see, e.g., [1]–[3]). Briefly stated,
the idea is that if the hypotheses testing problem is invariant to some
group of transformations, then one should look for detection statistics
that are also invariant to these transformations. This leads to the con-
cept of maximal invariant: any function of the data that is invariant to
the transformation depends on the data through the maximal invariant.
Furthermore, if the maximal invariant is a scalar function of the data
and has a monotone likelihood ratio, then it is a uniformly most pow-
erful invariant (UMPI). We refer the reader to [4]–[7] for comprehen-
sive presentations of maximal invariance and its application to various
detection problems in array processing.
In our case, finding the invariances is rather straightforward. Since

we wish to preserve Gaussianity of the data, we only consider linear
transformations ofXXX . As �2 is unknown, the detection statistic should
be invariant to scaling. Moreover, we wish to preserve a covariance
matrix that is proportional to III , and a rank-one mean underH1. These
considerations show that the hypothesis testing problem (1) is invariant
under the group of transformations G defined by

G = g : XXX ! g(XXX) = cAXBAXBAXBH (2)

where c is a scalar, and AAA and BBB are unitary matrices. Moreover, the
group of transformations induced on the parameter space is

�G = �g : [aaa sss �
2]! [aAaAaAa bBsBsBs c

2
�
2] (3)

with c = ab�. The maximal invariantmmm(XXX) of the problem must then
satisfy the following conditions:

mmm(XXX) =mmm (g(XXX)) 8g 2 G

mmm(XXX1) =mmm(XXX2)) 9g 2 G such that XXX2 = g(XXX1):

The maximal invariant statistic with respect to G is given by the fol-
lowing proposition.

1This assumption corresponds to the casewhere the noise covariancematrix is
known up to a scaling factor. If the noise covariance matrix is not proportional to
III but known, a prewhitening step can be applied to obtain the model in (1). Note
that assuming a completely unknown noise covariancematrix is not feasible here
as we do not have any secondary data (i.e., free of the signal of interest), which
would enable us to estimate the noise covariance matrix.
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Proposition 1: The maximal invariant statistic with respect to the
group of transformations (2) is ft�1�kg

m�1

k=1
, where �1 > �2 > � � � >

�m are them ordered eigenvalues ofXXXXXXH and t = TrfXXXXXXgH .
Proof: Obviously, t�1�k is invariant to scaling and to pre- and

postmultiplication ofXXX by unitary matrices. Furthermore, assume that

�k XXX2XXX
H
2

Tr XXX2XXX
H
2

=
�k XXX1XXX

H
1

Tr XXX1XXX
H
1

; k = 1; � � � ; m� 1:

Then, as a consequence, the equality also holds for k = m. Therefore,
�k(XXX2XXX

H
2 ) = c�k(XXX1XXX

H
1 ) for k = 1; � � � ;m. Hence, the singular

value decompositions of XXX2 and XXX1 are given by XXX2 = UUU 2���2VVV
H
2

andXXX1 = UUU1���1VVV
H
1 with ���2 = c���1. Therefore

XXX2 =UUU 2���2VVV
H
2 = cUUU 2���1VVV

H
2

= c UUU2UUU
H
1 XXX1 VVV 2VVV

H
1

H

which completes the proof.
Corollary 1: The maximal invariant statistic is a scalar function of

the data XXX only in the case m = 2, where it is given by the ratio of
the largest eigenvalue of the matrixXXXXXXH to its trace. Form > 2, the
maximal invariant is a vector-valued function of the data, and therefore
a UMPI test cannot exist.
It should also be observed that the induced maximal invariant is

simply kaaak2ksssk2=�2, which roughly corresponds toN times the array
signal-to-noise ratio.

B. Generalized-Likelihood Ratio Test

In this section, we derive the generalized-likelihood ratio test
(GLRT) for the problem in (1). As a first step toward deriving the
GLRT, maximum-likelihood estimates (MLE) of the unknown param-
eters must be obtained. Under the stated assumptions, the likelihood
function is given by [3]

`(XXX) =
exp � 1

�
Tr (XXX � �asasasH)(XXX � �asasasH)

H

(��2)mN
(4)

where � = 0 under H0 and � = 1 under H1. Under H0, only �2 is
unknown, and its MLE is readily obtained as

�20 =
1

mN
TrfXXXXXXHg: (5)

UnderH1, �2, aaa and sss are to be estimated. The MLE of �2 becomes

�21 =
1

mN
Tr (XXX � asasasH)(XXX � asasasH)

H
: (6)

Consequently, aaa and sss are the minimizing arguments of Trf(XXX �

asasasH)(XXX � asasasH)
H
g and are thus given by

asasasH = �1uuu1vvv
H
1 (7)

where �1, uuu1, and vvv1 are the largest singular value, left and right sin-
gular vectors ofXXX , respectively, i.e.,XXX = m

k=1
�kuuukvvv

H
k with �1 >

�2 > � � � > �m. The mN -root generalized-likelihood ratio (GLR)
takes the following form:

�20
�2
1

=
m

k=1
�2k

m

k=2
�2k

=
t

t� �1
(8)

with t = TrfXXXXXXHg and �1 = �21 . Finally, the GLRT can be equiva-
lently written as

L(XXX) =
�1
t

=
�max(XXXXXXH)

TrfXXXXXXHg

H

H

�: (9)

It should be pointed out that the GLR is a function of the max-
imal invariant. It is exactly the maximal invariant for m = 2.
It can also be observed that the derived detector is the ratio of
maxuuu(uuu

HXXXXXXhuuu=uuuHuuu) to TrfXXXXXXHg, which is kind of a normal-
ized matched filter, with matching to the uuu that gives the largest output
signal to noise ratio.

Remark 1: When sss is assumed to be drawn from a complex mul-
tivariate Gaussian distribution with zero mean and covariance matrix
PsIII , rather than being an unknown parameter vector, the GLRT is still
given by (9).

C. Distribution of the GLR Under the Null Hypothesis

In this section, we derive the distribution of g
�
= �1=t under H0.

As will become clear shortly, the derivation of the probability density
function (pdf) of g for any m is quite complicated, if not intractable.
Therefore, we will consider the general case of anym as long as pos-
sible and then focus on the special casem = 2, for which simple and
closed-form expressions will be derived. Note thatm = 2 corresponds
to the case where two beams are used to cover a spatial sector, and we
can always design the beams or define the spatial sector so thatm = 2
is adequate. Observe also that in the case of a monopulse radar, we in-
deed have m = 2.
In the following, we assume that N � m (to consider the inverse

case, one only needs to exchangem and N in the expressions below),
and we denote by �1 > �2 > . . . > �m � 0 the firstm eigenvalues
of XXXXXXH . We also define

z0 =

m

k=1

�k = t; zk = z�10 �k; k = 1; � � � ;m

with the implicit constraint that zm = 1 � m�1

k=1
zk. Let us also

define ��� = [�1 � � � �m]T ,��� = diag(���), zzz = [z0 z1 � � � zm�1]
T =

[z0 mmm
T ]
T
and zzz = [z1 z2 � � � zm]

T . Note that mmm is the maximal
invariant for the problem at hand. For any vectorxxx = [x1 x2 � � � xm]

T ,
VVV (xxx) stands for theVandermondematrixwhose (k; `) element isxk�1` .
Finally, we use the following short-hand notation for the pdf’s:

f(���) = f� ;� ;...;� (�1; �2; � � � ; �m)

f(zzz) = fZ ;Z ;���;Z (z0; z1; . . . ; zm�1)

f(mmm) = fZ ;���;Z (z1; . . . ; zm�1):

Since XXXXXXH has a complex Wishart distribution CWm(N; �
2III), the

joint pdf of its eigenvalues is given by [8], [9]

f(���) = c
e�Trf� ���g

�2mN
j���jN�m jVVV (���)j2 (10)

where c�1 = m

k=1
�(m� k + 1)�(N � k + 1), and j:j stands for

the determinant of a matrix. The Jacobian of the transformation from
��� to zzz is easily seen to be zm�1

0
. Therefore, the joint density function

of zzz is given by

f(zzz) = fZ (z0)f(mmm)
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with

fZ (z0) =
zmN�10 e�z =�

�(mN)�2mN
(11a)

f(mmm) = c�(mN)jZZZjN�m jVVV (zzz)j2 (11b)

where ZZZ = diag(zzz). It should be pointed out that z0 is independent
of (z1; � � � ; zm�1). Equation (11a) is the pdf of a (scaled) chi-squared
random variable, and (11b) is the pdf of the maximal invariant under
the null hypothesis. The pdf of g = z1 can be obtained as

fZ (z1) = � � � f(mmm)dz2 � � � dzm�1 (12)

where the integration is over the domain 0 � zm < zm�1 < . . . <
z1 � 1 and zm + zm�1 + . . . + z1 = 1. However, it appears quite
complicated to obtain a closed-form expression for this integral for any
m. Hence, we now focus on the case m = 2.
When m = 2, there is no integral in (12), and the pdf of g simply

becomes

fG(gjH0)=c�(2N)gN�2(1�g)N�2(2g�1)2;
1

2
�g�1: (13)

From this simple expression, the probability of false alarm, for a given
threshold �, can be written as

PFA =

1

�

fG(gjH0)dg

=

1

�

c�(2N)gN�2(1� g)N�2(2g� 1)2dg

=
c�(2N)

22N�2

1

(2��1)

x1=2(1� x)N�2dx

=
c�(2N)

22N�2
B

3

2
; N � 1 �B(2��1)

3

2
; N � 1 (14)

where B(a; b) and Bz(a; b) are the Beta and incomplete Beta func-
tions, respectively [10]. Therefore, the probability of false alarm is ob-
tained in closed-form and the threshold � can be set from (14).

D. Distribution of the GLR Under the Alternative Hypothesis When
m = 2

In this section, we derive an expression for the pdf of g under H1,
whenm = 2. An expression for the pdf of g = z1 for anym is derived
in the Appendix, but it involves an integral, similar to what was found
under H0 (see (12)). Hence, we focus on the casem = 2. Under H1,
XXX is multivariate Gaussian with meanMMM = asasasH . Therefore, the ma-
trixMMMH����1MMM has a single eigenvalue, namely !1 = kaaak2ksssk2=�2,
which is simply the induced maximal invariant. Using the results of the
Appendix, which hold for anym, it can be shown that

f� ;� (�1; �2)

=
e�!

!1 [�(N � 1)]2
e�(� +� )(�1�2)

N�2(�1 � �2)

� [0F1(N � 1;�1!1)� 0F1(N � 1;�2!1)] (15)

fZ ;Z (z0; z1)

=
e�! e�z z

2(N�1)
0

!1 [�(N � 1)]2
zN�21 (1� z1)

N�2(2z1� 1)

� [0F1(N � 1; z0z1!1)� 0F1 (N � 1; z0(1� z1)!1)] (16)

where 0F1(:; :) is the Bessel type of hypergeometric function [10].
Note that underH1, z0 and z1 are not independent, in contrast to what
happens under H0. The pdf of g = z1 can be obtained by integrating
(16) over z0, i.e.,

fG(gjH1)

=
e�!

!1 [�(N � 1)]2
gN�2(1� g)N�2(2g� 1)

�

1

0

e�z z
2(N�1)
0 [0F1(N � 1; z0g!1)

�0F1 (N � 1; z0(1� g)!1)]dz0

=
�(2N � 1)

[�(N � 1)]2
e�!

!1
gN�2(1� g)N�2(2g� 1)

� [1F1(2N � 1;N � 1; g!1)

�1F1 (2N � 1;N � 1; (1� g)!1)] : (17)

It is instructive to note the similarities and differences between (13) and
(17), which give the pdf of the GLR under both hypotheses. Note that
when !1 ! 0, the pdf in (17) converges to that in (13) as, for small
x, 1F1(a; b;x) ' 1 + (a=b)x. We also point out that the distribution
of the GLR depends on the unknown parameters of the problem only
through !1, which is the induced maximal invariant. The expression
in (17) enables us to compute the probability of detection for a given
threshold.

E. Optimality of the GLRT When m = 2

Equipped with the pdf’s of the GLR under both hypotheses, we now
show that the GLRT is indeed UMPI when m = 2. Toward this end,
let us observe that

C�1(2g� 1)
fG(gjH1)

fG(gjH0)
= 1F1(2N � 1;N � 1; g!1)

�1F1 (2N � 1;N � 1; (1� g)!1) : (18)

Let us define x = 2g � 1, � = !1=2 and consider

h(x) =
1

x
[1F1 (2N � 1;N � 1;�(1 + x))

�1F1 (2N � 1;N � 1;�(1� x))]

=
1

x

1

k=0

(2N � 1)k
(N � 1)k

�k

k!
(1 + x)k � (1� x)k : (19)

It is straightforward to show that x�1[(1+x)k�(1�x)k] is amonotone
function of x. Therefore, fG(gjH1)=fG(gjH0) = Ch(2g � 1) is a
monotone function of g, which proves that the GLRT is UMPI when
m = 2.

III. NUMERICAL EXAMPLES

In this section, we illustrate the performance of the GLRT. Through
the simulations, we consider an array of 16 elements with half-wave-
length separation. A beamspace transformation is designed so as to
detect sources within the spatial sector [10�; 20�]. Fig. 1 displays the
beampatterns corresponding to each of the two beams. The data matrix
XXX consists of the outputs of the beamspace matrix.
We assume that a unit power source is impinging on the array with

a direction of arr1ival equal to 13�. We define the signal-to-noise ratio
(SNR) as

SNR = 10 log10
kaaak2

�2
: (20)
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Fig. 1. Coverage of the [10 ; 20 ] sector with two beams.

Fig. 2. Probability of detection of the GLRT versus SNR. P = 10 and
varying N .

In Figs. 2 and 3, we display the probability of detection of the GLRT
as a function of the SNR, for different values of N and PFA. As the
distribution of the GLR under H1 depends on !1 only, and since the
latter is roughly proportional to N , we can observe a 3-dB gain when
the number of snapshots is doubled. Note also that, whenN increases,
the slope of the curve in Fig. 2 increases significantly, indicating that
a sufficient number of snapshots is required for the GLRT to perform
well (note thatN = 40 corresponds approximately to twice the number
of elements in the initial full array).

IV. CONCLUSION

We considered the problem of detecting an arbitrary rank-one com-
ponent in noise, operating in the beamspace domain. The GLRT was
shown to be the ratio of the largest eigenvalue of a Wishart matrix to
its trace. When m = 2 beams are used to cover a spatial sector, the
GLRT was proved to be UMPI. Moreover, new results concerning the
distribution of the (normalized) eigenvalues of a Wishart matrix were
presented, which enabled us to provide closed-form expressions for the
distribution of the GLRT under the null and the alternative hypotheses.

Fig. 3. Probability of detection of the GLRT versus SNR.N = 20 and varying
P .

APPENDIX

In this appendix, we provide expressions for the joint pdf of the max-
imal invariant mmm under H1 in the case where the matrixMMM

H����1MMM

has a single eigenvalue !1. Toward this end, we first derive an expres-
sion for the joint pdf of (z0; z1; � � � ; zm�1) and then integrate over z0.
The joint distributions are derived in two steps. First, we consider the
case where all eigenvalues of MMMH����1MMM , !1 > !2 > � � � > !m

are distinct and nonzero. Then, we take the limit of the distributions as
!2; � � � ; !m tend to zero. In the following, we denote!!! = [!1 � � � !m]
and 


 = diag(!!!).
The joint density of (�1; � � � ; �m) can be written as [9, eq. (45)]

f(���) = c
0 jFFF (���; !!!)j

jVVV (!!!)j
� jVVV (���)j j���jN�m

e
�Trf���g (21)

with

c
0 =

e�Trf



g

[�(N �m+ 1)]m

and where the (k; `) element of FFF (���; !!!) is 0F1(N �m + 1;�k!`).
Note that only the first bracketed term in (21) depends on !!!. For the
sake of conciseness, let b = N �m + 1 and use j0F1(b; �k!`)j for
jFFF (���; !!!)j. Observing that the Jacobian of the transformation from ��� to
zzz is zm�1

0
, it follows from (21) that

f(zzz) = c
0 j0F1(b; z0zk!`)j

jVVV (!!!)j
� z

m[N� ]�1
0

e
�z

� jVVV (zzz)j jZZZjN�m
: (22)

In the previous equation, only the first bracketed term depends on !!!.
The second term depends on z0 only, while the third term depends on
zzz. Also, observe that z0 is not independent of zzz due to the first term,
which depends on both z0 and zzz.
Let us consider us now the case where !2 = � � � = !m = 0. In

order to obtain the pdf of ��� or zzz, we need to make !2; � � � ; !m con-
verge to zero in (21) and (22). Apart from e�Trf




g—which converges
to e�! —only the first bracketed term in these equations depend on!!!,
and we are left with the problem of finding

lim
! ;���;! !0

j0F1(b; xk!`)j

jVVV (!!!)j
(23)

where xk is either �k or z0zk .
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Whenm = 2, this limit can be obtained directly as

lim
! !0

j0F1(b; xk!`)j

jVVV (!!!)j
=

0F1(b;x1!1)� 0F1(b;x2!1)

�!1
(24)

where we used the fact that 0F1(b; 0) = 1.
When m > 2, we have a 0/0 type of limit, and we apply l’Hôpital

rule by taking the (m � `) derivative of the columns of VVV (!!!) and
[0F1(b; xk!`] containing !` with respect to !`, and then setting !` =
0, for ` = m;m � 1; � � � ; 2 (see [9, Appendix B] for a similar ap-
proach). Doing so, it is possible to show that

lim
! !0

jVVV (!!!)j = (�1) !m�11

m�1

k=1

�(m� k): (25)

Next, using the fact that

@p0F1(b;xk!`)

@!p`
=

xpk
(b)p

0F1(b+ p;xk!`) (26)

it is possible to show that

lim
! ;���;! !0

j0F1(b; xk!`)j = jGGG(xxx; !1)j (27)

with

[GGG(xxx; !1)](k;1) = 0F1(b;xk!1)

[GGG(xxx; !1)](k;`) =
xm�`k

(b)m�`
; ` = 2; � � � ; m: (28)

Using (25) and (27), we obtain the following expressions for the
joint density of ��� and zzz, in the noncentral Wishart case and when
MMMH����1MMM has a single eigenvalue !1:

f(���) =C
e�!

!m�11

jGGG(���; !1)j jVVV (���)j j���jN�me�Trf��
�g (29)

f(zzz) =C
e�!

!m�11

z
m[N� ]�1
0 e�z

� jGGG(z0zzz; !1)j jVVV (zzz)j jZZZjN�m (30)

with

C�1 = (�1) [�(N �m+ 1)]m
m�1

k=1

�(m� k):

Settingm = 2 in (29) and (30) yields (15) and (16), respectively.
We now consider the joint distribution of the maximal invariantmmm =

[z1 � � � zm�1]
T . In order to obtain the latter, we need to integrate (30)

with respect to z0. To do so, let us rewrite (30) as

f(zzz) = C1 jGGG(z0zzz; !1)j z
m[N� ]�1
0 e�z (31)

where C1 does not depend on z0. Let us define a = m[N � ((m �
1)=2)]. Using a lemma for the determinant of partitioned matrices, it
follows that (with obvious definitions of vectors and matrices)

jGGG(z0zzz; !1)j =
0F1(b; z0z1!1) ���T

fff WWW

= jWWW j 0F1(b; z0z1!1)� ���TWWW�1fff

= jWWW j

m

k=1


k0F1(b; z0zk!1): (32)

Now, using the fact that [11, eq. (7.522-5)]

1

0

e�z za�10 0F1(b; z0zk!1)dz0 = �(a)1F1(a; b; zk!1) (33)

it follows that

f(mmm) =

1

0

f(zzz)dz0

=C1�(a)jWWW j

m

k=1


k1F1(a; b; zk!1)

=C1�(a) jHHH(zzz; !1)j (34)

with

[HHH(zzz; !1)](k;1) = 1F1(a; b; zk!1)

[HHH(zzz; !1)](k;`) =
zm�`k

(b)m�`
; ` = 2; � � � ;m: (35)

Finally, the distribution of the maximal invariant is given by

f(mmm) = C0
e�!

!m�11

jHHH(zzz; !1)j jVVV (zzz)j jZZZjN�m (36)

whereC 0 = C�(a). The distribution of the GLR is, in theory, given by

fZ (z1) = � � � f(mmm)dz2 � � � dzm�1 (37)

where the integration is over the domain 0 � zm < zm�1 < . . . <
z1 � 1 and zm + zm�1 + . . . + z1 = 1. When m = 2, there is no
integral, and settingm = 2 in (36) yields (17).

REFERENCES

[1] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York:
Wiley, 1982.

[2] E. L. Lehmann, Testing Statistical Hypotheses, 2nd ed. New York:
Springer-Verlag, 1986.

[3] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and
Time Series Analysis. Reading, MA: Addison-Wesley, 1991.

[4] S. Bose and A. O. Steinhardt, “Amaximal invariant framework for adap-
tive detection with structured and unstructured covariance matrices,”
IEEE Trans. Signal Process., vol. 43, no. 9, pp. 2164–2175, Sep. 1995.

[5] , “Optimum array detector for a weak signal in unknown noise,”
IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 911–922, Jul.
1996.

[6] E. Conte, A. De Maio, and C. Galdi, “CFAR detection of multidimen-
sional signals: an invariant approach,” IEEE Trans. Signal Process., vol.
51, no. 1, pp. 142–151, Jan. 2003.

[7] S. Kraut, L. L. Scharf, and R. W. Butler, “The adaptive coherence esti-
mator: a uniformly most powerful invariant adaptive detection statistic,”
IEEE Trans. Signal Process., vol. 53, no. 2, pp. 427–438, Feb. 2005.

[8] A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples,” Annals Mathemat. Stat., vol. 35, pp. 475–501,
Jun. 1964.

[9] M. Kang and M.-S. Alouini, “Largest eigenvalue of complex Wishart
matrices and performance analysis of MIMO MRC systems,” IEEE J.
Sel. Areas Commun., vol. 21, no. 3, pp. 418–426, Apr. 2003.

[10] Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, M. Abramowitz and I. A. Stegun, Eds., Dover ,
New York, Nov. 1970.

[11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Prod-
ucts, 5th ed, A. Jeffrey, Ed. New York: Academic, 1994.


